已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning-Based Automatic Collateral Assessment in Patients with Acute Ischemic Stroke

医学 人口 侧支循环 改良兰金量表 放射科 优势比 冲程(发动机) 内科学 缺血 缺血性中风 工程类 环境卫生 机械工程
作者
Yoon‐Chul Kim,Jong‐Won Chung,Oh Young Bang,Hong Mihee,Woo‐Keun Seo,Gyeong‐Moon Kim,Eung Yeop Kim,Jin Soo Lee,Ji Man Hong,David S. Liebeskind,Jeffrey L. Saver
出处
期刊:Translational Stroke Research [Springer Nature]
卷期号:14 (1): 66-72 被引量:11
标识
DOI:10.1007/s12975-022-01036-1
摘要

This study aimed to develop a supervised deep learning (DL) model for grading collateral status from dynamic susceptibility contrast magnetic resonance perfusion (DSC-MRP) images from patients with large vessel occlusion (LVO) acute ischemic stroke (AIS) and compare its performance against experts’ manual grading. Among consecutive LVO-AIS at three medical center sites, DSC-MRP data were processed to generate collateral flow maps consisting of arterial, capillary, and venous phases. With the use of expert readings as a reference, a DL model was developed to analyze collateral status with output classified into good and poor grades. The resulting model was externally validated in a later-collected population from one medical center site. The model was trained on 255 patients and externally validated on 72 patients. In the all-site internal validation population, DL grading of good collateral probability yielded a c statistic of 0.91; in the external validation population, the c statistic was 0.85. In the external validation population, there was moderate agreement between the experts’ grades and DL grades (kappa = 0.53, 95% CI = 0.32–0.73, p < 0.0001). Day 7 infarct growth volume was higher in DL-graded poor collateral group than good collateral group patients (median volume [26 mL vs. 6 mL], p = 0.01) in patients with successful reperfusion (modified treatment in cerebral infarction (mTICI) = 2b–3). In all patients with a 90-day modified Rankin Scale (mRS) score, there was a shift to more favorable outcomes in the good collateral group, with a common odds ratio of 2.99 (95% CI = 1.89–4.76, p < 0.0001). The DL-based collateral grading was in good agreement with expert manual grading in both development and validation populations. After exclusion of patients with large infarct volume, early reperfusion is more likely to benefit patients with the poor collateral flow, and the DL method has the potential to aid the assessment of collateral status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
氟锑酸完成签到 ,获得积分10
刚刚
sora98完成签到 ,获得积分10
1秒前
1秒前
喜悦的小土豆完成签到 ,获得积分10
2秒前
3秒前
浮游应助仙女爱科研采纳,获得10
3秒前
4秒前
mr_wang发布了新的文献求助10
4秒前
炙热初柔发布了新的文献求助10
6秒前
灰灰完成签到 ,获得积分10
8秒前
川川完成签到,获得积分20
8秒前
Niki完成签到 ,获得积分10
9秒前
miyya发布了新的文献求助10
9秒前
贪玩的谷芹完成签到 ,获得积分10
11秒前
12秒前
jynihao完成签到,获得积分10
13秒前
温暖发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
GingerF应助科研通管家采纳,获得60
16秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助ROC采纳,获得10
19秒前
yuyu完成签到,获得积分20
20秒前
jynihao发布了新的文献求助10
23秒前
鸭鸭完成签到 ,获得积分10
23秒前
qianyixingchen完成签到 ,获得积分10
24秒前
24秒前
yuyu发布了新的文献求助30
24秒前
我是老大应助舒心人达采纳,获得10
25秒前
29秒前
Lllleen完成签到 ,获得积分10
31秒前
李明完成签到 ,获得积分10
31秒前
32秒前
RHJ完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655