QSAR Study on the Antitumor Activity of Novel 1,2, 3-Triazole Compounds based on Topomer Comfa Method

化学 数量结构-活动关系 部分 三唑 磺胺 立体化学 组合化学 有机化学
作者
Qiu Lie Wei,Xing Zhang,Tong Jian Bo
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:20 (6): 674-683
标识
DOI:10.2174/1570180819666220512123310
摘要

Background: The high mortality rate of cancer is endangering human health, and the research and development of new anticancer drugs have the attention of scientists worldwide. Sulfonamides have become the focus of anticancer drug research. 1,2,3-triazole compounds can inhibit the formation of a variety of tumor cells. Based on the excellent antitumor activity exhibited by the 1,2,3-triazole compound skeleton, the sulfonamide moiety in the sulfonamide structure can be introduced into the triazole compound skeleton to obtain highly active anticancer drugs. Methods: The Topomer CoMFA method was used to study the three-dimensional quantitative structureactivity relationship of 58 new 1,2,3-triazole compounds with sulfa groups, and a 3D-QSAR model was obtained. Results: The cross-validation coefficient q2 is 0.545, the non-cross-correlation coefficient r2 is 0. 754, r_pred2 is 0.930, the optimal number of principal components N is 4, and the standard estimation error SEE is 0.319. These results show that the model has good internal and external forecasting capabilities. By searching for the R group in the Topomer search module and combining with the more active groups in the existing molecules, 6 new compounds with theoretically higher anti-HL-60 (leukemia cell line) activity are obtained. Conclusion: The prediction result of the Topomer CoMFA model is good, and the statistical verification is effective. The prediction results of ADMET show that the 6 new compounds meet the drug requirements and are expected to become potential anti-HL-60 inhibitors, providing guidance for the synthesis of anti-tumor drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助嘻嘻采纳,获得10
1秒前
科研通AI5应助小只bb采纳,获得30
1秒前
yyyy发布了新的文献求助10
1秒前
2023AKY完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
彭于晏应助惠惠采纳,获得10
4秒前
风魂剑主完成签到,获得积分10
5秒前
yryzst9899发布了新的文献求助10
5秒前
6秒前
飘逸小笼包完成签到,获得积分10
6秒前
科研小郑完成签到,获得积分10
6秒前
CipherSage应助熊boy采纳,获得10
6秒前
XXGG完成签到 ,获得积分10
7秒前
大个应助舒心赛凤采纳,获得10
7秒前
晨曦发布了新的文献求助10
8秒前
8秒前
ff0110完成签到,获得积分10
9秒前
星辰大海应助苹果萧采纳,获得10
9秒前
徐徐完成签到,获得积分10
9秒前
哈哈哈哈发布了新的文献求助10
10秒前
请叫我风吹麦浪应助yoon采纳,获得10
10秒前
认真的青柠完成签到,获得积分10
10秒前
bbanshan完成签到,获得积分10
10秒前
卫生纸发布了新的文献求助10
10秒前
10秒前
11秒前
奔奔完成签到,获得积分10
11秒前
脑洞疼应助李来仪采纳,获得10
12秒前
12秒前
12秒前
demonox发布了新的文献求助10
12秒前
jbhb发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
范月月完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794