清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Study on Anti-inflammatory Mechanism of Blueberry based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 计算生物学 药理学 计算机科学 化学 生物 医学 物理 量子力学 护理部
作者
Shuangkou Chen,He Bai,Mingxin Xu,Xiaoqing Tan,Yinying Guo,Hang Jie,Jiansheng Huang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:26 (2): 362-372
标识
DOI:10.2174/1386207325666220516144836
摘要

Abstract: The Batman-TCM research platform based on network pharmacology was used to predict the reverse targets of 11 active components of blueberry. The anti-inflammatory target genes of these components were extracted by comparing them with the anti-inflammatory drug target genes in the GeneCards database. GO enrichment and KEGG pathway, as well as protein interaction analysis of these anti-inflammatory target genes, were carried out using the String database. The antiinflammatory component-target-action pathway map of blueberry was constructed using the Cytoscape software. The molecular docking between seven components and two targets was validated using the Autodock-vina program. The results showed that 7 components had anti-inflammatory activity and acted on 84 anti-inflammatory targets. KEGG and GO analysis showed that the main active components of blueberry could inhibit inflammation by inhibiting the production of inflammatory factors and enhancing immunity. Network analysis revealed that the main anti-inflammatory targets of blueberry active components were TNF, ESR1, AGTR1, and IGF1. Based on molecular docking analysis, the main components of blueberry integrate with 2 important targets in inflammatory networks. Collectively, we characterized the anti-inflammatory effect of blueberry by multi-component, multi-target, and multi-pathway. The molecular mechanism of the multi-target effect of blueberry was preliminarily expounded, thereby providing a scientific basis for exploring the material basis and mechanism of the anti- inflammatory action of blueberry. Background: Non-steroidal anti-inflammatory drugs, such as aspirin, have beneficial effects in the treatment of inflammation but they often have undesired side effects. In contrast, various natural remedies, with their unique natural, safe and effective ingredients, have achieved good effects in the treatment of inflammation and become widely used for anti-inflammatory medication. Objective: To provide scientific basis for exploring the material basis and mechanism of antiinflammatory action of blueberry. Method: The anti-inflammatory target genes of these components were extracted by comparing them with the anti-inflammatory drug target genes in the GeneCards database. GO enrichment and KEGG pathway, as well as protein interaction analysis of these anti-inflammatory target genes, were carried out by using the String database. The anti-inflammatory component-target-action pathway map of blueberry was constructed using the Cytoscape software. The molecular docking between seven components and two targets was validated using the Autodock-vina program. The results showed that 7 components had anti-inflammatory activity and acted on 84 anti-inflammatory targets. Results: 7 components had anti-inflammatory activity and acted on 84 anti-inflammatory targets. KEGG and GO analysis showed that the main active components of blueberry could inhibit inflammation by inhibiting the production of inflammatory factors and enhancing immunity. Network analysis revealed that the main anti-inflammatory targets of blueberry active components were TNF, ESR1, AGTR1 and IGF1. Based on molecular docking analysis, the main components of blueberry integrate with 2 important targets in inflammatory networks. Conclusion: The molecular mechanism of the multi-target effect of blueberry was preliminarily expounded, thereby providing a scientific basis for exploring the material basis and mechanism of antiinflammatory action of blueberry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方琼燕完成签到 ,获得积分10
23秒前
科研通AI2S应助帮帮我好吗采纳,获得10
41秒前
科目三应助zhouleiwang采纳,获得10
42秒前
丘比特应助帮帮我好吗采纳,获得10
57秒前
1分钟前
快乐小狗发布了新的文献求助10
1分钟前
1分钟前
Meredith完成签到,获得积分10
1分钟前
乐乐应助快乐小狗采纳,获得30
1分钟前
2分钟前
2分钟前
2分钟前
呼风唤雨发布了新的文献求助10
2分钟前
繁馥然发布了新的文献求助20
3分钟前
呼风唤雨完成签到,获得积分10
3分钟前
marska完成签到,获得积分10
3分钟前
繁馥然完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
4分钟前
章铭-111发布了新的文献求助10
4分钟前
章铭-111完成签到,获得积分10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
Eric800824完成签到 ,获得积分10
5分钟前
poegtam完成签到,获得积分10
5分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
6分钟前
严珍珍完成签到 ,获得积分10
6分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
6分钟前
6分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
6分钟前
苦逼的医学生陳完成签到 ,获得积分10
6分钟前
7分钟前
鳗鱼起眸发布了新的文献求助10
7分钟前
7分钟前
JamesPei应助鳗鱼起眸采纳,获得10
7分钟前
刘刘完成签到 ,获得积分10
7分钟前
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997