已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimized convolutional neural network-based comprehensive early diagnosis method for multiple eye disease recognition

计算机科学 卷积神经网络 人工智能 超参数 支持向量机 模式识别(心理学) 眼底(子宫) 机器学习 医学 眼科
作者
R. Niruban,Deepa Raja
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (04) 被引量:3
标识
DOI:10.1117/1.jei.31.4.043016
摘要

The multilabel classification method (MCM) is an active and effective research area in image analysis for the detection of various diseases. MCM provides insights and assistance to ophthalmologists in the detection of eye disease at an early stage. We propose comprehensive age-related eye disease detection at an early stage using retinal fundus images that were taken from the online public dataset. The flower pollination optimization algorithm was used for the optimization of the hyperparameters of the deep convolutional neural network (DCNN), which increased the speed and accuracy of the network. Initially, training was performed using the public datasets. The overall improvement in training accuracy (7.5%) was achieved using the optimized method compared with the nonoptimized method. Then, the output of the DCNN was applied to a multiclass support vector machine for the classification of eye diseases. The performance of the proposed method was compared with that of the other optimization techniques with the help of the standard performance measures, namely accuracy, specificity, sensitivity, precision, and F1-score. Upon comparing the performance of the proposed method with that of the nonoptimized DCNN in terms of performance measures, it had an improvement in the detection accuracy of 9.62% for AMD, 3.57% for glaucoma, 6.59% for normal, 7.71% for DR, and 11.75% for cataract. The obtained results show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qunzhu发布了新的文献求助10
2秒前
一条蛆完成签到 ,获得积分10
5秒前
6秒前
8秒前
8秒前
ameng完成签到,获得积分10
9秒前
文毛完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
bkagyin应助风口上的飞猪采纳,获得10
11秒前
季忆发布了新的文献求助10
11秒前
深情安青应助ax采纳,获得10
12秒前
科研通AI5应助qiany采纳,获得10
12秒前
尹荣轩完成签到,获得积分10
14秒前
风中黎昕完成签到 ,获得积分10
17秒前
18秒前
管恩杰发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助30
20秒前
科研通AI5应助认真平蝶采纳,获得10
20秒前
24秒前
24秒前
大模型应助不落采纳,获得10
25秒前
26秒前
29秒前
健壮的冰夏完成签到,获得积分10
33秒前
SciGPT应助季忆采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
wsyy发布了新的文献求助10
36秒前
37秒前
领导范儿应助盛夏如花采纳,获得30
40秒前
zho应助科研通管家采纳,获得10
40秒前
大模型应助科研通管家采纳,获得10
40秒前
季忆完成签到,获得积分10
42秒前
jing煜完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
43秒前
yoona发布了新的文献求助10
43秒前
SDS完成签到,获得积分10
43秒前
43秒前
45秒前
47秒前
kid1412完成签到 ,获得积分10
48秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660895
求助须知:如何正确求助?哪些是违规求助? 3222103
关于积分的说明 9743424
捐赠科研通 2931599
什么是DOI,文献DOI怎么找? 1605116
邀请新用户注册赠送积分活动 757685
科研通“疑难数据库(出版商)”最低求助积分说明 734462