A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties

数学优化 计算机科学 稳健优化 最优化问题 随机优化 估计员 调度(生产过程) 随机变量 决策问题 概率分布 随机规划 数学 算法 统计
作者
Tito Homem‐de‐Mello,Qingxia Kong,Rodrigo Godoy-Barba
出处
期刊:Informs Journal on Computing 卷期号:34 (5): 2845-2865 被引量:3
标识
DOI:10.1287/ijoc.2022.1212
摘要

The appointment scheduling problem (ASP) studies how to manage patient arrivals to a healthcare system to improve system performance. An important challenge occurs when some patients may not show up for an appointment. Although the ASP is well studied in the literature, the vast majority of the existing work does not consider the well-observed phenomenon that patient no-show is influenced by the appointment time, the usual decision variable in the ASP. This paper studies the ASP with random service time (exogenous uncertainty) with known distribution and patient decision-dependent no-show behavior (endogenous uncertainty). This problem belongs to the class of stochastic optimization with decision-dependent uncertainties. Such problems are notoriously difficult as they are typically nonconvex. We propose a stochastic projected gradient path (SPGP) method to solve the problem, which requires the development of a gradient estimator of the objective function—a nontrivial task, as the literature on gradient-based optimization algorithms for problems with decision-dependent uncertainty is very scarce and unsuitable for our model. Our method can solve the ASP problem under arbitrarily smooth show-up probability functions. We present solutions under different patterns of no-show behavior and demonstrate that breaking the assumption of constant show-up probability substantially changes the scheduling solutions. We conduct numerical experiments in a variety of settings to compare our results with those obtained with a distributionally robust optimization method developed in the literature. The cost reduction obtained with our method, which we call the value of distribution information, can be interpreted as how much the system performance can be improved by knowing the distribution of the service times, compared to not knowing it. We observe that the value of distribution information is up to 31% of the baseline cost, and that such value is higher when the system is crowded or/and the waiting time cost is relatively high. Summary of Contribution: This paper studies an appointment scheduling problem under time-dependent patient no-show behavior, a situation commonly observed in practice. The problem belongs to the class of stochastic optimization problems with decision-dependent uncertainties in the operations research literature. Such problems are notoriously difficult to solve as a result of the lack of convexity, and the present case requires different techniques because of the presence of continuous distributions for the service times. A stochastic projected gradient path method, which includes the development of specialized techniques to estimate the gradient of the objective function, is proposed to solve the problem. For problems with a similar structure, the algorithm can be applied once the gradient estimator of the objective function is obtained. Extensive numerical studies are presented to demonstrate the quality of the solutions, the importance of modeling time-dependent no-shows in appointment scheduling, and the value of using distribution information about the service times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电脑桌完成签到,获得积分10
1秒前
汉堡包应助咿咿呀呀采纳,获得10
2秒前
科研通AI5应助大胆遥采纳,获得10
2秒前
2秒前
标致的安荷完成签到,获得积分10
3秒前
ABin完成签到,获得积分10
3秒前
跳跃难胜发布了新的文献求助10
3秒前
阳光的虔纹完成签到 ,获得积分10
3秒前
4秒前
番茄爱喝粥完成签到,获得积分10
4秒前
CipherSage应助老王爱学习采纳,获得10
4秒前
Fa完成签到,获得积分10
4秒前
5秒前
kira完成签到,获得积分10
6秒前
舒服的茹嫣完成签到,获得积分20
6秒前
Stvn发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
明理的天蓝完成签到,获得积分10
8秒前
咳咳发布了新的文献求助10
8秒前
木叶研完成签到,获得积分10
8秒前
无花果应助通~采纳,获得10
8秒前
9秒前
10秒前
周助发布了新的文献求助10
10秒前
伯赏秋白完成签到,获得积分10
10秒前
慕青应助sunzhiyu233采纳,获得10
10秒前
Sherwin完成签到,获得积分10
10秒前
羽毛完成签到,获得积分20
11秒前
xiongjian发布了新的文献求助10
11秒前
一方通行完成签到 ,获得积分10
11秒前
11秒前
monster0101完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
Stvn完成签到,获得积分20
13秒前
核桃发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740