琼脂糖
化学
亲和层析
蛋白质工程
蛋白质纯化
串联亲和纯化
生物化学
融合蛋白
靶蛋白
色谱法
重组DNA
酶
基因
作者
Louise T. Chow,Dmitry G. Vassylyev
出处
期刊:Methods in molecular biology
日期:2022-01-01
卷期号:: 61-82
标识
DOI:10.1007/978-1-0716-2176-9_5
摘要
We have developed the CL7/Im7 protein purification system to achieve high-yield, high-purity and high-activity (HHH) products in one step. The system is based on the natural ultrahigh-affinity complex between the two small proteins encoded by colicinogenic plasmids carried by certain E. coli strains, the DNAse domain of colicin E7 (CE7; MW ~ 15 kDa) and its natural endogenous inhibitor, the immunity protein 7 (Im7; MW ~ 10 kDa). CL7 is an engineered variant of CE7, in which the toxic DNA-binding and catalytic activities have been eliminated while retaining the high affinity to Im7. CL7 is used as a protein tag, while Im7 is covalently attached to agarose beads. To make the CL7/Im7 technique easy to use, we have designed a set of the E. coli expression vectors for fusion of a target protein to the protease-cleavable CL7-tag either at the N- or the C-terminus, and also have the options of the dual (CL7/His8) tag. A subset of vectors is dedicated for cloning membrane and multisubunit proteins. The CL7/Im7 system has several notable advatantages over other available affinity purification techniques. First, high concentrations of the small Im7 protein are coupled to the beads resulting in the high column capacities (up to 60 mg/mL). Second, an exceptional stability of Im7 allows for multiple (100+) regeneration cycles with no loss of binding capacities. Third, the CL7-tag improves protein expression levels, solubility and, in some cases, assists folding of the target proteins. Fourth, the on-column proteolytic elution produces purified proteins with few or no extra amino acid residues. Finally, the CL7/Im7 affinity is largely insensitive to high salt concentrations. For many target proteins, loading the bacterial lysates on the Im7 column in high salt is a key to high purity. Altogether, these properties of the CL7/Im7 system allow for a one-step HHH purification of most challenging, biologically and clinically significant proteins.
科研通智能强力驱动
Strongly Powered by AbleSci AI