Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding

计算机科学 带宽(计算) 编码(社会科学) 信道状态信息 频道(广播) 传输(电信) 信道编码 计算机工程 无线 算法 敏捷软件开发 电子工程 人工智能 理论计算机科学 解码方法 电信 数学 统计 软件工程 工程类
作者
David Burth Kurka,Deniz Gündüz
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2009.12480
摘要

We propose deep learning based communication methods for adaptive-bandwidth transmission of images over wireless channels. We consider the scenario in which images are transmitted progressively in layers over time or frequency, and such layers can be aggregated by receivers in order to increase the quality of their reconstructions. We investigate two scenarios, one in which the layers are sent sequentially, and incrementally contribute to the refinement of a reconstruction, and another in which the layers are independent and can be retrieved in any order. Those scenarios correspond to the well known problems of \textit{successive refinement} and \textit{multiple descriptions}, respectively, in the context of joint source-channel coding (JSCC). We propose DeepJSCC-$l$, an innovative solution that uses convolutional autoencoders, and present three architectures with different complexity trade-offs. To the best of our knowledge, this is the first practical multiple-description JSCC scheme developed and tested for practical information sources and channels. Numerical results show that DeepJSCC-$l$ can learn to transmit the source progressively with negligible losses in the end-to-end performance compared with a single transmission. Moreover, DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes, with the additional advantage of graceful degradation with channel SNR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不劳而获完成签到 ,获得积分10
4秒前
JUN完成签到,获得积分10
5秒前
shacodow完成签到,获得积分10
6秒前
ll完成签到,获得积分10
8秒前
瞿人雄完成签到,获得积分10
9秒前
龙弟弟完成签到 ,获得积分10
10秒前
没心没肺完成签到,获得积分10
11秒前
学术霸王完成签到,获得积分10
12秒前
1002SHIB完成签到,获得积分10
13秒前
nihaolaojiu完成签到,获得积分10
13秒前
sheetung完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
38秒前
路漫漫其修远兮完成签到 ,获得积分10
39秒前
月下荷花完成签到 ,获得积分10
39秒前
小山己几完成签到,获得积分10
45秒前
李音完成签到 ,获得积分10
52秒前
七厘米发布了新的文献求助10
52秒前
哥哥发布了新的文献求助10
58秒前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
fbwg完成签到,获得积分10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
松柏完成签到 ,获得积分10
1分钟前
Song完成签到 ,获得积分10
2分钟前
孙朱珠完成签到,获得积分10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助www采纳,获得10
2分钟前
HY完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370