Solving Stochastic Online Food Delivery Problem via Iterated Greedy Algorithm With Decomposition-Based Strategy

计算机科学 数学优化 迭代函数 贪婪算法 服务(商务) 随机优化 采样(信号处理) 功能(生物学) 选择(遗传算法) 运筹学 算法 数学 机器学习 数学分析 经济 滤波器(信号处理) 进化生物学 经济 计算机视觉 生物
作者
Jie Zheng,Ling Wang,Li Wang,Shengyao Wang,Jing-fang Chen,Xing Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 957-969 被引量:17
标识
DOI:10.1109/tsmc.2022.3189771
摘要

Online food delivery (OFD) service has developed rapidly due to its great convenience for customers, the enormous markets for restaurants and the abundant job openings for riders. However, OFD platforms are encountering enormous challenges, such as massive demand, inevitable uncertainty and short delivery time. This article addresses an OFD problem with stochastic food preparation time. It is a complex NP-hard problem with uncertainty, large search space, strongly coupled subproblems, and high timeliness requirements. To solve the problem, we design an iterated greedy algorithm with a decomposition-based strategy. Concretely speaking, to cope with the large search space due to massive demands, a filtration mechanism is designed by preliminarily selecting suitable riders. To reduce the risk affected by the uncertainty, we introduce a risk-measuring criterion into the objective function and employ a scenario-sampling method. For timeliness requirements caused by short delivery time, we design two time-saving strategies via mathematical analysis, i.e., an adaptive selection mechanism to choose the method with less computational effort and a fast evaluation mechanism based on the small-scale sampling and machine learning model to speed up evaluation. We also prove an upper bound of the stochastic time cost under risk measurement as one of the baseline features to improve the prediction accuracy. The experiments on real-world data sets demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff发布了新的文献求助20
刚刚
刚刚
1秒前
顾矜应助隐形萃采纳,获得10
1秒前
12321234发布了新的文献求助20
1秒前
端庄以冬完成签到,获得积分10
1秒前
ggggg完成签到,获得积分10
2秒前
2秒前
zzh发布了新的文献求助10
2秒前
蒙塔啦完成签到,获得积分10
4秒前
5秒前
abao发布了新的文献求助10
5秒前
5秒前
5秒前
King16发布了新的文献求助10
6秒前
弋甫完成签到,获得积分10
7秒前
蒙塔啦发布了新的文献求助10
7秒前
ekm7k完成签到,获得积分10
8秒前
Lucas应助该饮茶了采纳,获得10
9秒前
jwxstc完成签到,获得积分20
10秒前
安安发布了新的文献求助10
10秒前
轨迹发布了新的文献求助30
10秒前
11秒前
cdercder应助霸气映之采纳,获得10
11秒前
优秀元枫完成签到,获得积分10
11秒前
无花果应助初夏采纳,获得10
13秒前
arong发布了新的文献求助10
13秒前
13秒前
16秒前
科研通AI5应助谦谦采纳,获得10
18秒前
CC完成签到,获得积分10
20秒前
20秒前
21秒前
曹great完成签到,获得积分10
21秒前
21秒前
lvv发布了新的文献求助20
22秒前
毛豆应助koala采纳,获得10
22秒前
民大胡完成签到,获得积分10
23秒前
又又完成签到 ,获得积分10
24秒前
重要荷花完成签到 ,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728783
求助须知:如何正确求助?哪些是违规求助? 3273829
关于积分的说明 9983551
捐赠科研通 2989157
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747961