亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of ternary mixtures of virgin olive oil with canola, hazelnut or safflower oils via non-targeted ATR-FTIR fingerprinting and chemometrics

化学计量学 油菜 偏最小二乘回归 化学 食品科学 三元运算 傅里叶变换红外光谱 色谱法 橄榄油 油酸 数学 计算机科学 统计 化学工程 工程类 程序设计语言 生物化学
作者
Stella A. Ordoudi,Onur Özdikicierler,María Z. Tsimidou
出处
期刊:Food Control [Elsevier]
卷期号:142: 109240-109240 被引量:7
标识
DOI:10.1016/j.foodcont.2022.109240
摘要

Detection of extra virgin olive oil (EVOO) adulteration with ternary mixtures of undeclared foreign oils has rarely been reported in literature. The aim of the study was to develop a fit-for-purpose and highly sensitive non-targeted fingerprinting method via ATR-FTIR spectroscopy and qualitative modelling to detect ternary blends of a cheap unsaturated oil (safflower), two high in oleic acid oils (canola and hazelnut oils) at a standard adulteration level (20% v/v). An in-house spectral library for authentic EVOOs was exploited as reference data source. The 2nd derivative ATR-FTIR spectra were carefully explored for outliers throughout the multivariate calibration procedure using the Partial Least Squares Projection to Latent Structures-Discriminant Analysis (PLS-DA) and the Soft Independent Modelling of Class Analogy (SIMCA) methods. Stepwise external validation of the resulting models signified 100% sensitivity in detecting challenging cases of adulteration, i.e. with 5% canola and 15% hazelnut oils. Taken the natural variability in composition of authentic EVOOs from different producing regions and harvest year and the complexity of the studied mixtures, the overall predictive power of every resulting model was found quite high, >92%. A prospective for expanding application at lower adulteration levels i.e. 10% v/v was also evidenced.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
23秒前
量子星尘发布了新的文献求助10
28秒前
充电宝应助迷路的台灯采纳,获得10
32秒前
yan关闭了yan文献求助
35秒前
40秒前
小二郎应助默默采纳,获得10
41秒前
42秒前
44秒前
47秒前
Moona发布了新的文献求助10
47秒前
49秒前
49秒前
小李要上岸完成签到,获得积分10
56秒前
56秒前
Liz完成签到 ,获得积分10
57秒前
58秒前
1分钟前
NexusExplorer应助天台风好大采纳,获得10
1分钟前
热情的c99发布了新的文献求助10
1分钟前
南寅完成签到,获得积分10
1分钟前
Elaine完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Cloud发布了新的文献求助10
1分钟前
1分钟前
zxw发布了新的文献求助10
1分钟前
大个应助zxw采纳,获得10
1分钟前
zxw完成签到,获得积分10
1分钟前
1分钟前
pinklay完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
一颗溏心蛋完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714244
求助须知:如何正确求助?哪些是违规求助? 5222163
关于积分的说明 15273002
捐赠科研通 4865715
什么是DOI,文献DOI怎么找? 2612323
邀请新用户注册赠送积分活动 1562451
关于科研通互助平台的介绍 1519674