A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
tzj发布了新的文献求助30
3秒前
不想起昵称完成签到 ,获得积分10
4秒前
H7发布了新的文献求助10
5秒前
桐桐应助科研通管家采纳,获得10
7秒前
顾矜应助Cheng采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
轩辕寄风应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
凯凯完成签到,获得积分10
9秒前
9秒前
无误发布了新的文献求助10
10秒前
H7完成签到,获得积分10
10秒前
10秒前
科研通AI5应助安安采纳,获得10
11秒前
13秒前
Ava应助雄鹰般的女人采纳,获得10
14秒前
STARY发布了新的文献求助30
14秒前
大Doctor陈发布了新的文献求助10
14秒前
nannan完成签到,获得积分10
14秒前
17秒前
调皮的思松完成签到,获得积分10
18秒前
淡淡涫发布了新的文献求助10
18秒前
zz完成签到 ,获得积分10
19秒前
19秒前
22秒前
左肩微笑发布了新的文献求助10
23秒前
ang完成签到,获得积分10
23秒前
24秒前
俭朴依白完成签到,获得积分10
24秒前
29秒前
潼熙甄完成签到 ,获得积分10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182