亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的棒棒糖完成签到 ,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
萝卜猪完成签到,获得积分10
10秒前
56秒前
李海艳完成签到 ,获得积分10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
Nicole完成签到,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得150
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
2分钟前
白云发布了新的文献求助10
2分钟前
2分钟前
Nicole发布了新的文献求助10
2分钟前
悦耳冬萱完成签到 ,获得积分10
3分钟前
彩虹儿应助af采纳,获得10
3分钟前
HRB完成签到 ,获得积分10
3分钟前
Adi完成签到,获得积分10
4分钟前
5分钟前
af完成签到,获得积分10
5分钟前
11发布了新的文献求助10
5分钟前
所所应助weinaonao采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
7分钟前
海风奕婕完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
小蘑菇应助科研通管家采纳,获得10
8分钟前
8分钟前
weinaonao发布了新的文献求助10
8分钟前
8分钟前
11完成签到,获得积分10
8分钟前
11发布了新的文献求助10
8分钟前
充电宝应助weinaonao采纳,获得10
9分钟前
9分钟前
孙国扬发布了新的文献求助10
9分钟前
11完成签到 ,获得积分10
9分钟前
hugeyoung完成签到,获得积分10
10分钟前
10分钟前
李健应助yukky采纳,获得30
11分钟前
白云完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505