亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岂曰无衣发布了新的文献求助10
3秒前
小六子完成签到,获得积分10
15秒前
思源应助岂曰无衣采纳,获得10
17秒前
23秒前
23秒前
36秒前
39秒前
48秒前
48秒前
Scheduling完成签到 ,获得积分10
1分钟前
Charles完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助无心的善愁采纳,获得10
2分钟前
Chen完成签到 ,获得积分10
3分钟前
3分钟前
郭敬一发布了新的文献求助10
3分钟前
嘻嘻完成签到,获得积分10
3分钟前
郭敬一完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Chris发布了新的文献求助10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
是真的完成签到 ,获得积分10
5分钟前
852应助sujinyu采纳,获得10
5分钟前
6分钟前
6分钟前
sujinyu发布了新的文献求助10
6分钟前
xmsyq完成签到 ,获得积分10
7分钟前
小丑鱼儿完成签到 ,获得积分10
7分钟前
得咎完成签到 ,获得积分10
7分钟前
bjcyqz完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780506
求助须知:如何正确求助?哪些是违规求助? 5656754
关于积分的说明 15453250
捐赠科研通 4911100
什么是DOI,文献DOI怎么找? 2643307
邀请新用户注册赠送积分活动 1590976
关于科研通互助平台的介绍 1545479