A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书羽发布了新的文献求助10
3秒前
天天快乐应助july九月采纳,获得10
6秒前
顾晓发布了新的文献求助10
9秒前
李彦完成签到,获得积分10
10秒前
10秒前
优美的谷完成签到,获得积分10
12秒前
领导范儿应助无妨采纳,获得10
13秒前
DYK发布了新的文献求助10
13秒前
深情安青应助一马奔腾采纳,获得10
13秒前
NexusExplorer应助左丘世立采纳,获得10
14秒前
hjaxii完成签到,获得积分10
14秒前
123发布了新的文献求助10
15秒前
15秒前
一山一山amountain完成签到,获得积分10
18秒前
19秒前
22秒前
23秒前
23秒前
不安匕发布了新的文献求助10
24秒前
25秒前
勇闯SCI一区完成签到,获得积分10
25秒前
一马奔腾发布了新的文献求助10
27秒前
july九月发布了新的文献求助10
28秒前
29秒前
Philips完成签到,获得积分10
29秒前
30秒前
科研通AI2S应助lfl采纳,获得10
31秒前
Andrew完成签到 ,获得积分10
33秒前
高高的冷之完成签到,获得积分10
34秒前
34秒前
CodeCraft应助du采纳,获得10
34秒前
DYK完成签到,获得积分10
35秒前
薄雾密雨发布了新的文献求助10
35秒前
玉玉症要犯惹完成签到,获得积分10
37秒前
37秒前
善良晓蓝发布了新的文献求助10
41秒前
伶俐雨双发布了新的文献求助10
44秒前
Will3978发布了新的文献求助10
44秒前
打打应助高分子狗采纳,获得10
48秒前
48秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387136
求助须知:如何正确求助?哪些是违规求助? 3000059
关于积分的说明 8788887
捐赠科研通 2685837
什么是DOI,文献DOI怎么找? 1471290
科研通“疑难数据库(出版商)”最低求助积分说明 680200
邀请新用户注册赠送积分活动 672900