亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助opp采纳,获得10
5秒前
xiying完成签到 ,获得积分10
12秒前
Dreamchaser完成签到,获得积分10
36秒前
qiu发布了新的文献求助10
37秒前
研友_850aeZ完成签到,获得积分0
46秒前
小超人完成签到 ,获得积分10
46秒前
大胆的自行车完成签到 ,获得积分10
1分钟前
hwjg发布了新的文献求助10
1分钟前
Murphy完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
sube完成签到 ,获得积分10
1分钟前
NI完成签到 ,获得积分10
1分钟前
桐桐应助ceeray23采纳,获得20
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Panini完成签到 ,获得积分10
2分钟前
2分钟前
圆润润呐发布了新的文献求助10
2分钟前
自信书文完成签到 ,获得积分10
2分钟前
orixero应助萌道采纳,获得10
2分钟前
甜美的沅完成签到 ,获得积分10
2分钟前
2分钟前
opp发布了新的文献求助10
2分钟前
顺心成仁完成签到 ,获得积分10
2分钟前
义气幼珊完成签到 ,获得积分10
2分钟前
耶椰耶完成签到 ,获得积分10
3分钟前
李健的小迷弟应助142857采纳,获得10
3分钟前
阳光大山完成签到 ,获得积分10
3分钟前
CodeCraft应助莱万特采纳,获得10
3分钟前
3分钟前
3分钟前
萌道发布了新的文献求助10
3分钟前
香蕉觅云应助wang采纳,获得10
3分钟前
莱万特发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558406
求助须知:如何正确求助?哪些是违规求助? 4643430
关于积分的说明 14670992
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808