The Demand for, and Avoidance of, Information

显著性(神经科学) 突出 好奇心 心理学 价(化学) 信息搜寻 社会心理学 认知心理学 计算机科学 人工智能 物理 量子力学 图书馆学
作者
Russell Golman,George Loewenstein,András Molnár,Silvia Saccardo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (9): 6454-6476 被引量:87
标识
DOI:10.1287/mnsc.2021.4244
摘要

Management scientists recognize that decision making depends on the information people have but lack a unified behavioral theory of the demand for (and avoidance of) information. Drawing on an existing theoretical framework in which utility depends on beliefs and the attention paid to them, we develop and test a theory of the demand for information encompassing instrumental considerations, curiosity, and desire to direct attention to beliefs one feels good about. We decompose an individual’s demand for information into the desire to refine beliefs, holding attention constant, and the desire to focus attention on anticipated beliefs, holding these beliefs constant. Because the utility of resolving uncertainty (i.e., refining beliefs) depends on the attention paid to it and more important or salient questions capture more attention, demand for information depends on the importance and salience of the question(s) it addresses. In addition, because getting new information focuses attention on one’s beliefs and people want to savor good news and ignore bad news, the desire to obtain or avoid information depends on the valence (i.e., goodness or badness) of anticipated beliefs. Five experiments (n = 2,361) test and find support for these hypotheses, looking at neutrally valenced as well as ego-relevant information. People are indeed more inclined to acquire information (a) when it feels more important, even if it cannot aid decision making (Experiments 1A and 2A); (b) when a question is more salient, manipulated through time lag (Experiments 1B and 2B); and (c) when anticipated beliefs have higher valence (Experiment 2C). This paper was accepted by Yan Chen, behavioral economics and decision analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助顺利傲之采纳,获得10
刚刚
Fiona37完成签到,获得积分10
1秒前
跳跃的野狼完成签到,获得积分10
1秒前
武穆杰完成签到,获得积分10
2秒前
橘子头宝贝完成签到,获得积分10
2秒前
鲈鱼完成签到,获得积分10
2秒前
zjw完成签到,获得积分10
2秒前
踏实秋莲完成签到,获得积分10
2秒前
sky完成签到,获得积分10
3秒前
飞飞飞发布了新的文献求助20
3秒前
汉堡包应助虚心不惜采纳,获得30
3秒前
3秒前
4秒前
无死何能生新颜完成签到,获得积分10
4秒前
4秒前
mnliao完成签到,获得积分10
4秒前
健壮书包完成签到,获得积分10
4秒前
啊啊啊完成签到,获得积分10
4秒前
5秒前
5秒前
小诗完成签到,获得积分10
5秒前
5秒前
bcsunny2022完成签到,获得积分10
5秒前
Jean0603完成签到,获得积分10
5秒前
JamesPei应助谦让谷菱采纳,获得10
5秒前
5秒前
稚未完成签到,获得积分10
5秒前
武穆杰发布了新的文献求助20
5秒前
啊炜发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
刘刘完成签到,获得积分10
6秒前
vv的平行宇宙完成签到,获得积分10
6秒前
WalkToSky完成签到,获得积分10
6秒前
kingwill举报哎哟求助涉嫌违规
6秒前
6秒前
西野完成签到,获得积分10
7秒前
7秒前
天津发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612427
求助须知:如何正确求助?哪些是违规求助? 4696552
关于积分的说明 14893385
捐赠科研通 4733235
什么是DOI,文献DOI怎么找? 2546401
邀请新用户注册赠送积分活动 1510561
关于科研通互助平台的介绍 1473423