The Demand for, and Avoidance of, Information

显著性(神经科学) 突出 好奇心 心理学 价(化学) 信息搜寻 社会心理学 认知心理学 计算机科学 人工智能 量子力学 物理 图书馆学
作者
Russell Golman,George Loewenstein,András Molnár,Silvia Saccardo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (9): 6454-6476 被引量:65
标识
DOI:10.1287/mnsc.2021.4244
摘要

Management scientists recognize that decision making depends on the information people have but lack a unified behavioral theory of the demand for (and avoidance of) information. Drawing on an existing theoretical framework in which utility depends on beliefs and the attention paid to them, we develop and test a theory of the demand for information encompassing instrumental considerations, curiosity, and desire to direct attention to beliefs one feels good about. We decompose an individual’s demand for information into the desire to refine beliefs, holding attention constant, and the desire to focus attention on anticipated beliefs, holding these beliefs constant. Because the utility of resolving uncertainty (i.e., refining beliefs) depends on the attention paid to it and more important or salient questions capture more attention, demand for information depends on the importance and salience of the question(s) it addresses. In addition, because getting new information focuses attention on one’s beliefs and people want to savor good news and ignore bad news, the desire to obtain or avoid information depends on the valence (i.e., goodness or badness) of anticipated beliefs. Five experiments (n = 2,361) test and find support for these hypotheses, looking at neutrally valenced as well as ego-relevant information. People are indeed more inclined to acquire information (a) when it feels more important, even if it cannot aid decision making (Experiments 1A and 2A); (b) when a question is more salient, manipulated through time lag (Experiments 1B and 2B); and (c) when anticipated beliefs have higher valence (Experiment 2C). This paper was accepted by Yan Chen, behavioral economics and decision analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九发布了新的文献求助20
刚刚
zhui发布了新的文献求助10
1秒前
通达完成签到,获得积分10
2秒前
FashionBoy应助猪猪hero采纳,获得10
2秒前
jy发布了新的文献求助10
2秒前
祥云完成签到,获得积分10
2秒前
无敌鱼完成签到,获得积分10
3秒前
ffu完成签到 ,获得积分10
3秒前
天天快乐应助好的采纳,获得10
3秒前
3秒前
香蕉觅云应助科研小白花采纳,获得10
3秒前
18746005898发布了新的文献求助10
4秒前
科研通AI5应助fanfan44390采纳,获得10
4秒前
4秒前
4秒前
小刺猬完成签到,获得积分10
4秒前
小庄发布了新的文献求助10
4秒前
唐人雄发布了新的文献求助10
5秒前
英姑应助Khr1stINK采纳,获得10
5秒前
爆米花应助甜筒采纳,获得10
5秒前
Gang完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助10
6秒前
Hello应助潇洒的青采纳,获得10
6秒前
6秒前
共享精神应助长孙归尘采纳,获得10
6秒前
7秒前
Evan123发布了新的文献求助10
7秒前
8秒前
xctdyl1992发布了新的文献求助10
8秒前
8秒前
Su完成签到,获得积分10
8秒前
俗丨完成签到,获得积分10
9秒前
科研通AI5应助海底落日采纳,获得30
9秒前
9秒前
CodeCraft应助纯真忆安采纳,获得10
9秒前
顺顺发布了新的文献求助10
9秒前
9秒前
10秒前
nan完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794