Prediction of filtration performance of compressed fibrous media

材料科学 过滤(数学) 曲折 纤维 压缩(物理) 滤波器(信号处理) 复合材料 多孔介质 未压缩视频 多孔性 数学 计算机科学 人工智能 对象(语法) 视频跟踪 统计 计算机视觉
作者
Cheng Chang,Qianmei Lyu,Cai Linghu,Zhongli Ji,Gensheng Li
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:287: 120515-120515 被引量:10
标识
DOI:10.1016/j.seppur.2022.120515
摘要

Fibrous filter media is usually subjected to compression in practice. However, the effect of compression on the pore structure, flow field and filtration performance of heterogeneous compressed filter media has not been studied well. In this work, the filtration performance of two fibrous filter media with different compressions was investigated by experiments, classical single fiber efficiency theory and simulations. Artificial 3-D structures were established via GeoDict software based on the parameters of real uncompressed fibrous filter media. There was good agreement between the experimental and simulated results. For compressed filter media, it was found that the equivalent fiber diameter increased with increasing compression ratio. After compression, a shift in the pore size distribution and an increase in the channel tortuosity can be observed. The filtration performance varies for different compressed filter media. In addition, the filtration efficiency decreases as the angle between the fibers and the X-Y plane increases. There is a decrease in the penetration for structures with a broader fiber size distribution. Not only the real fiber size distribution and orientation but also the variation in fiber diameters with compression should be considered when predicting or calculating the performance of compressed filter media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小喵发布了新的文献求助10
刚刚
FashionBoy应助毛毛哦啊采纳,获得10
刚刚
Lucas应助Chen采纳,获得10
1秒前
强健的蚂蚁完成签到,获得积分20
1秒前
小宇发布了新的文献求助10
1秒前
斜杠武完成签到,获得积分20
1秒前
2秒前
伞兵龙发布了新的文献求助10
2秒前
RC_Wang应助科研小民工采纳,获得10
2秒前
sanben完成签到,获得积分10
2秒前
2秒前
_蝴蝶小姐完成签到,获得积分10
3秒前
诗轩发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
迟大猫应助乐乱采纳,获得10
5秒前
万能图书馆应助派大星采纳,获得10
6秒前
FashionBoy应助娜行采纳,获得10
7秒前
7秒前
传奇3应助后知后觉采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助Chem is try采纳,获得10
8秒前
9秒前
a方舟发布了新的文献求助10
9秒前
寒冷书竹发布了新的文献求助10
9秒前
9秒前
hhh发布了新的文献求助10
9秒前
顾矜应助富婆嘉嘉子采纳,获得10
9秒前
9秒前
9秒前
10秒前
江风海韵完成签到,获得积分10
10秒前
火星上的从雪完成签到,获得积分10
10秒前
在水一方应助kai采纳,获得10
10秒前
打打应助留胡子的青柏采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672