适度
心理学
潜在类模型
协变量
应对(心理学)
潜变量
结构方程建模
心情
联想(心理学)
人口
潜变量模型
社会心理学
计量经济学
临床心理学
计算机科学
机器学习
心理治疗师
数学
社会学
人口学
作者
Karen Nylund‐Gibson,Adam C Garber,Jay P. Singh,Melissa R. Witkow,Adrienne Nishina,Amy Bellmore
标识
DOI:10.1177/01987429211067214
摘要
Latent class analysis (LCA) is a useful statistical approach for understanding heterogeneity in a population. This article provides a pedagogical introduction to LCA modeling and provides an example of its use to understand youths’ daily coping strategies. The analytic procedures are outlined for choosing the number of classes and integration of the LCA variable within a structural equation model framework, specifically a latent class moderation model, and a detailed table provides a summary of relevant modeling steps. This applied example demonstrates the modeling context when the LCA variable is moderating the association between a covariate and two outcome variables. Results indicate that students’ coping strategies moderate the association between social stress and negative mood; however, they do not moderate the social stress-positive mood association. Online supplemental materials include R (MplusAutomation) code to automate the enumeration procedure, ML three-step auxiliary variable integration, and the generation of figures for visually depicting LCA results.
科研通智能强力驱动
Strongly Powered by AbleSci AI