Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review

归一化差异植被指数 植被(病理学) 增强植被指数 机器学习 计算机科学 植被分类 土地覆盖 环境科学 遥感 人工智能 气候变化 土地利用 地理 植被指数 生态学 医学 生物 病理
作者
Aya Ferchichi,Ali Ben Abbes,Vincent Barra,Imed Riadh Farah
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101552-101552 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101552
摘要

Over the last few years, Deep learning (DL) approaches have been shown to outperform state-of-the-art machine learning (ML) techniques in many applications such as vegetation forecasting, sales forecast, weather conditions, crop yield prediction, landslides detection and even COVID-19 spread predictions. Several DL algorithms have been employed to facilitate vegetation forecasting research using Remotely Sensed (RS) data. Vegetation is an extremely important component of our global ecosystem and a necessary indicator of land cover dynamics and productivity. Vegetation phenology is influenced by lifecycle patterns, seasonality and weather conditions, leading to changes in their spectral reflectance. Various relevant information, such as vegetation indices (VIs), can be extracted from RS data for vegetation forecasting. Therefore, the Normalized Difference Vegetation Index (NDVI) is known as one of the most widely recognized indices for vegetation related studies. This paper reviews the related works on DL-based spatio-temporal vegetation forecasting using RS data over the period between 2015 and 2021. In this review, we present several DL-based studies and discuss DL algorithms and various sources of data that have been used in these studies. The purpose of this work is to highlight the open challenges such as spatio-temporal prediction issues, spatial and temporal non-stationarity, fusion data, hybrid approaches, deep transfer learning and large parameter requirements. We also attempt to figure out the future directions and limits of DL for vegetation forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇宛筠发布了新的文献求助10
刚刚
张子扬完成签到,获得积分10
1秒前
1秒前
忧郁紫翠完成签到,获得积分10
2秒前
kkuang发布了新的文献求助10
4秒前
kalala发布了新的文献求助10
5秒前
6秒前
7秒前
pride应助mmyhn采纳,获得10
8秒前
丘比特应助害羞彩虹采纳,获得10
10秒前
海陵吹风鸡完成签到,获得积分10
10秒前
大模型应助包子采纳,获得10
11秒前
hh完成签到,获得积分10
13秒前
russing完成签到 ,获得积分10
14秒前
能干的丸子完成签到,获得积分10
15秒前
16秒前
kalala完成签到,获得积分10
17秒前
开朗猫咪关注了科研通微信公众号
17秒前
18秒前
21秒前
研友_VZG7GZ应助ziwei采纳,获得10
21秒前
研友_VZG7GZ应助青寻采纳,获得10
22秒前
22秒前
猫和老鼠发布了新的文献求助10
22秒前
hh发布了新的文献求助10
22秒前
蓝狄完成签到,获得积分10
22秒前
脑洞疼应助dudao采纳,获得30
23秒前
23秒前
害羞彩虹发布了新的文献求助10
23秒前
25秒前
marcelo完成签到,获得积分10
25秒前
无聊的发布了新的文献求助10
26秒前
lvben发布了新的文献求助10
26秒前
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
一一应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352