Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics

神经科学 皮质电图 神经调节 神经生理学 计算机科学 脑电图 脑深部刺激 电生理学 癫痫 时间分辨率 生物医学工程 医学 刺激 心理学 物理 病理 量子力学 疾病 帕金森病
作者
Youngbin Tchoe,Andrew M. Bourhis,Daniel R. Cleary,Brittany Stedelin,Jihwan Lee,Karen J. Tonsfeldt,Erik C. Brown,Dominic A. Siler,Angelique C. Paulk,Jimmy C. Yang,Hongseok Oh,Yun Goo Ro,Keundong Lee,Samantha M. Russman,Mehran Ganji,Ian Galton,Sharona Ben‐Haim,Ahmed M. Raslan,Shadi A. Dayeh
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:14 (628) 被引量:67
标识
DOI:10.1126/scitranslmed.abj1441
摘要

Electrophysiological devices are critical for mapping eloquent and diseased brain regions and for therapeutic neuromodulation in clinical settings and are extensively used for research in brain-machine interfaces. However, the existing clinical and experimental devices are often limited in either spatial resolution or cortical coverage. Here, we developed scalable manufacturing processes with a dense electrical connection scheme to achieve reconfigurable thin-film, multithousand-channel neurophysiological recording grids using platinum nanorods (PtNRGrids). With PtNRGrids, we have achieved a multithousand-channel array of small (30 μm) contacts with low impedance, providing high spatial and temporal resolution over a large cortical area. We demonstrated that PtNRGrids can resolve submillimeter functional organization of the barrel cortex in anesthetized rats that captured the tissue structure. In the clinical setting, PtNRGrids resolved fine, complex temporal dynamics from the cortical surface in an awake human patient performing grasping tasks. In addition, the PtNRGrids identified the spatial spread and dynamics of epileptic discharges in a patient undergoing epilepsy surgery at 1-mm spatial resolution, including activity induced by direct electrical stimulation. Collectively, these findings demonstrated the power of the PtNRGrids to transform clinical mapping and research with brain-machine interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F冯完成签到,获得积分10
刚刚
刚刚
JJ完成签到,获得积分10
刚刚
二豆子0发布了新的文献求助10
刚刚
潦草发布了新的文献求助10
1秒前
sarah完成签到,获得积分10
1秒前
1秒前
凸迩丝儿完成签到 ,获得积分10
1秒前
科研通AI5应助wu采纳,获得30
1秒前
1秒前
爆米花应助艺玲采纳,获得10
2秒前
2秒前
诸葛雪兰发布了新的文献求助10
2秒前
3秒前
CC完成签到,获得积分10
3秒前
wanci应助gaos采纳,获得10
3秒前
顾矜应助四火采纳,获得10
3秒前
人福药业发布了新的文献求助30
3秒前
liuguohua126发布了新的文献求助10
4秒前
分子遗传小菜鸟完成签到,获得积分10
4秒前
洛尚发布了新的文献求助10
4秒前
英俊的铭应助咳咳采纳,获得10
5秒前
科研通AI2S应助嗯呢采纳,获得10
5秒前
姆姆发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
11发布了新的文献求助10
8秒前
大个应助limof采纳,获得10
8秒前
9秒前
竹筏过海应助chen采纳,获得50
10秒前
10秒前
schoolboy发布了新的文献求助10
10秒前
完美世界应助洛尚采纳,获得10
10秒前
苹果萧发布了新的文献求助10
11秒前
钟是一梦发布了新的文献求助10
12秒前
Lucas应助Light采纳,获得10
13秒前
13秒前
13秒前
李健的粉丝团团长应助Ll采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740