CT-based radiomics model for preoperative prediction of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt

医学 经颈静脉肝内门体分流术 肝性脑病 无线电技术 接收机工作特性 放射科 回顾性队列研究 队列 曲线下面积 磁共振成像 逻辑回归 核医学 门脉高压 外科 内科学 肝硬化
作者
Sihang Cheng,Xiang Yu,Xinyue Chen,Zhengyu Jin,Huadan Xue,Zhiwei Wang,Ping Xie
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1132) 被引量:6
标识
DOI:10.1259/bjr.20210792
摘要

To develop and evaluate a machine learning-based CT radiomics model for the prediction of hepatic encephalopathy (HE) after transjugular intrahepatic portosystemic shunt (TIPS).A total of 106 patients who underwent TIPS placement were consecutively enrolled in this retrospective study. Regions of interest (ROIs) were drawn on unenhanced, arterial phase, and portal venous phase CT images, and radiomics features were extracted, respectively. A radiomics model was established to predict the occurrence of HE after TIPS by using random forest algorithm and 10-fold cross-validation. Receiver operating characteristic (ROC) curves were performed to validate the capability of the radiomics model and clinical model on the training, test and original data sets, respectively.The radiomics model showed favorable discriminatory ability in the training cohort with an area under the curve (AUC) of 0.899 (95% CI, 0.848 to 0.951), while in the test cohort, it was confirmed with an AUC of 0.887 (95% CI, 0.760 to 1.00). After applying this model to original data set, it had an AUC of 0.955 (95% CI, 0.896 to 1.00). A clinical model was also built with an AUC of 0.649 (95% CI, 0.530 to 0.767) in the original data set, and a Delong test demonstrated its relative lower efficiency when compared with the radiomics model (p < 0.05).Machine learning-based CT radiomics model performed better than traditional clinical parameter-based models in the prediction of post-TIPS HE.Radiomics model for the prediction of post-TIPS HE was built based on feature extraction from routine acquired pre-operative CT images and feature selection by random forest algorithm, which showed satisfied performance and proved the advantages of machine learning in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默雪旋完成签到 ,获得积分10
3秒前
fw发布了新的文献求助10
3秒前
多吃香菜完成签到,获得积分10
3秒前
4秒前
faiting完成签到,获得积分10
4秒前
Jameson完成签到,获得积分10
5秒前
5秒前
五斤老陈醋完成签到,获得积分10
5秒前
5秒前
小康学弟完成签到 ,获得积分10
6秒前
juwish完成签到,获得积分10
6秒前
背后的小白菜完成签到,获得积分10
6秒前
ZZQ完成签到 ,获得积分20
6秒前
Tetrahydron发布了新的文献求助10
7秒前
神圣先知完成签到,获得积分10
7秒前
木卫三完成签到,获得积分10
8秒前
wangyr11完成签到,获得积分10
8秒前
明理的青寒完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
kdkddk完成签到,获得积分10
10秒前
谢言一完成签到,获得积分10
11秒前
机智采枫完成签到 ,获得积分10
11秒前
吾侪发布了新的文献求助10
11秒前
南城完成签到 ,获得积分10
11秒前
豆西豆完成签到,获得积分10
12秒前
方羽发布了新的文献求助10
12秒前
zhoull发布了新的文献求助20
12秒前
Pampers完成签到,获得积分10
13秒前
13秒前
liu完成签到,获得积分10
14秒前
笨笨小蚂蚁完成签到 ,获得积分10
16秒前
17秒前
Mystic完成签到,获得积分10
17秒前
17秒前
橙子完成签到 ,获得积分10
17秒前
18秒前
Thunnus001完成签到,获得积分10
18秒前
可耐的问柳完成签到 ,获得积分10
18秒前
什么也难不倒我完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478