CT-based radiomics model for preoperative prediction of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt

医学 经颈静脉肝内门体分流术 肝性脑病 无线电技术 接收机工作特性 放射科 回顾性队列研究 队列 曲线下面积 磁共振成像 逻辑回归 核医学 门脉高压 外科 内科学 肝硬化
作者
Sihang Cheng,Xiang Yu,Xinyue Chen,Zhengyu Jin,Huadan Xue,Zhiwei Wang,Ping Xie
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1132) 被引量:6
标识
DOI:10.1259/bjr.20210792
摘要

To develop and evaluate a machine learning-based CT radiomics model for the prediction of hepatic encephalopathy (HE) after transjugular intrahepatic portosystemic shunt (TIPS).A total of 106 patients who underwent TIPS placement were consecutively enrolled in this retrospective study. Regions of interest (ROIs) were drawn on unenhanced, arterial phase, and portal venous phase CT images, and radiomics features were extracted, respectively. A radiomics model was established to predict the occurrence of HE after TIPS by using random forest algorithm and 10-fold cross-validation. Receiver operating characteristic (ROC) curves were performed to validate the capability of the radiomics model and clinical model on the training, test and original data sets, respectively.The radiomics model showed favorable discriminatory ability in the training cohort with an area under the curve (AUC) of 0.899 (95% CI, 0.848 to 0.951), while in the test cohort, it was confirmed with an AUC of 0.887 (95% CI, 0.760 to 1.00). After applying this model to original data set, it had an AUC of 0.955 (95% CI, 0.896 to 1.00). A clinical model was also built with an AUC of 0.649 (95% CI, 0.530 to 0.767) in the original data set, and a Delong test demonstrated its relative lower efficiency when compared with the radiomics model (p < 0.05).Machine learning-based CT radiomics model performed better than traditional clinical parameter-based models in the prediction of post-TIPS HE.Radiomics model for the prediction of post-TIPS HE was built based on feature extraction from routine acquired pre-operative CT images and feature selection by random forest algorithm, which showed satisfied performance and proved the advantages of machine learning in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KKK发布了新的文献求助10
刚刚
ldngis完成签到,获得积分10
刚刚
刚刚
赵文若发布了新的文献求助10
1秒前
伶俐一曲发布了新的文献求助10
1秒前
1秒前
从笙发布了新的文献求助10
1秒前
2秒前
Han发布了新的文献求助10
2秒前
小棉背心完成签到 ,获得积分10
2秒前
2秒前
甜甜冬寒完成签到,获得积分20
2秒前
玉米侠发布了新的文献求助10
2秒前
彭于晏应助英俊元正采纳,获得10
3秒前
3秒前
Hello应助Lee采纳,获得10
3秒前
3秒前
奥特曼完成签到,获得积分10
4秒前
乐乐完成签到,获得积分10
4秒前
4秒前
刘岩松发布了新的文献求助10
5秒前
橙鹿鹿的猫完成签到,获得积分10
6秒前
华仔应助wenwen采纳,获得10
6秒前
科研通AI5应助KKK采纳,获得10
6秒前
山海皆无期完成签到,获得积分10
6秒前
6秒前
黄橙子完成签到 ,获得积分10
7秒前
7秒前
wanci应助十三客采纳,获得10
7秒前
晨曦暮雪发布了新的文献求助10
7秒前
8秒前
小蘑菇应助majf采纳,获得10
8秒前
Melody完成签到,获得积分10
9秒前
司空元正发布了新的文献求助10
9秒前
bkagyin应助枯藤老柳树采纳,获得10
9秒前
wandering发布了新的文献求助10
10秒前
10秒前
xu完成签到 ,获得积分10
10秒前
鲤鱼月饼完成签到 ,获得积分10
11秒前
林霖完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902263
求助须知:如何正确求助?哪些是违规求助? 4181287
关于积分的说明 12980612
捐赠科研通 3946574
什么是DOI,文献DOI怎么找? 2164719
邀请新用户注册赠送积分活动 1182920
关于科研通互助平台的介绍 1089408