CT-based radiomics model for preoperative prediction of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt

医学 经颈静脉肝内门体分流术 肝性脑病 无线电技术 接收机工作特性 放射科 回顾性队列研究 队列 曲线下面积 磁共振成像 逻辑回归 核医学 门脉高压 外科 内科学 肝硬化
作者
Sihang Cheng,Xiang Yu,Xinyue Chen,Zhengyu Jin,Huadan Xue,Zhiwei Wang,Ping Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1132) 被引量:6
标识
DOI:10.1259/bjr.20210792
摘要

To develop and evaluate a machine learning-based CT radiomics model for the prediction of hepatic encephalopathy (HE) after transjugular intrahepatic portosystemic shunt (TIPS).A total of 106 patients who underwent TIPS placement were consecutively enrolled in this retrospective study. Regions of interest (ROIs) were drawn on unenhanced, arterial phase, and portal venous phase CT images, and radiomics features were extracted, respectively. A radiomics model was established to predict the occurrence of HE after TIPS by using random forest algorithm and 10-fold cross-validation. Receiver operating characteristic (ROC) curves were performed to validate the capability of the radiomics model and clinical model on the training, test and original data sets, respectively.The radiomics model showed favorable discriminatory ability in the training cohort with an area under the curve (AUC) of 0.899 (95% CI, 0.848 to 0.951), while in the test cohort, it was confirmed with an AUC of 0.887 (95% CI, 0.760 to 1.00). After applying this model to original data set, it had an AUC of 0.955 (95% CI, 0.896 to 1.00). A clinical model was also built with an AUC of 0.649 (95% CI, 0.530 to 0.767) in the original data set, and a Delong test demonstrated its relative lower efficiency when compared with the radiomics model (p < 0.05).Machine learning-based CT radiomics model performed better than traditional clinical parameter-based models in the prediction of post-TIPS HE.Radiomics model for the prediction of post-TIPS HE was built based on feature extraction from routine acquired pre-operative CT images and feature selection by random forest algorithm, which showed satisfied performance and proved the advantages of machine learning in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助如意的冰双采纳,获得10
1秒前
能干的问晴完成签到,获得积分10
2秒前
miemie66发布了新的文献求助10
2秒前
香芋完成签到 ,获得积分10
2秒前
nihao发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
韩野发布了新的文献求助10
7秒前
山海完成签到,获得积分10
7秒前
penpen发布了新的文献求助10
7秒前
8秒前
张芃尧完成签到,获得积分20
9秒前
天天快乐应助CHEN采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
SciGPT应助hearz采纳,获得10
11秒前
11秒前
孙元应助zzz采纳,获得10
12秒前
12秒前
元谷雪发布了新的文献求助10
13秒前
英姑应助Vizz采纳,获得10
13秒前
起个名真难完成签到,获得积分10
13秒前
幻影完成签到 ,获得积分10
13秒前
ayintree完成签到,获得积分10
14秒前
14秒前
小蘑菇应助mm采纳,获得10
14秒前
Nan发布了新的文献求助200
14秒前
16秒前
打工人发布了新的文献求助10
16秒前
张芃尧发布了新的文献求助10
17秒前
Franco发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
10086发布了新的文献求助80
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233