卷积神经网络
可视化
表面粗糙度
深度学习
材料科学
吸附
纳米尺度
编码(内存)
表面光洁度
人工神经网络
比例(比率)
分子动力学
计算机科学
解码方法
生物系统
人工智能
计算科学
算法
纳米技术
化学
物理
计算化学
有机化学
生物
量子力学
复合材料
作者
Gaoyang Li,Yuting Guo,Takuya Mabuchi,Donatas Surblys,Taku Ohara,Takashi Tokumasu
标识
DOI:10.1016/j.molliq.2022.118489
摘要
Molecular dynamics (MD) simulation can effectively analyze the transport properties of liquid at the solid surface with different nanoscale roughness, while high computational costs are required. Herein, a deep learning encoding-decoding convolutional neural network is proposed to predict the adsorption density distribution of atomic and organic liquids under different molecular scale surface roughness. Compared with the previous deep learning studies focusing on simple macro adsorption parameters, our deep learning method realizes the prediction and visualization of micro scale adsorption behavior with very high accuracy. The data-driven deep learning algorithm replaces the MD extensive sampling and simplifies the operation process, which improves the computational efficiency of a single model 36000-fold. This study proves the good coupling between MD and deep learning method, which is helpful for designing surface geometry to obtain desirable interfacial transport properties of molecular liquid and complementing the nanoscale model system enabling the interactive visualization.
科研通智能强力驱动
Strongly Powered by AbleSci AI