Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-Fe30Cr12Mn8Al Ti3 high-entropy alloys

材料科学 高熵合金 合金 固溶强化 降水 极限抗拉强度 沉淀硬化 延展性(地球科学) 相(物质) 材料的强化机理 加工硬化 冶金 微观结构 蠕动 气象学 有机化学 化学 物理
作者
Jiantao Fan,Liming Fu,Yanle Sun,Feng Xu,Yi Ding,Mao Wen,Aidang Shan
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:118: 25-34 被引量:34
标识
DOI:10.1016/j.jmst.2021.11.058
摘要

Precipitate hardening is considered as an effective method to strengthen High- and medium-entropy alloys (HEAs and MEAs), especially the recently developed Co-free HEAs/MEAs. In this work, a systematic study on precipitation and mechanical behaviors of a Co-free HEAs with dilute amount of Al addition, Ni47-xFe30Cr12Mn8AlxTi3 (x = 2 at.%, 5 at.% and 7 at.%), is presented. Results shown that the Ni45Fe30Cr12Mn8Al2Ti3 has a face-centered cubic (FCC) + L12 + η three-phased structure. With increasing Al content, the formation of η phase is inhibited, accompanying with an enhanced formation of B2 phase, and FCC + L12 + B2 three-phased structure is thus observed in alloys with x = 5 and 7. The constrained lattice mismatch between FCC matrix and L12 precipitates is decreased with increasing Al content, leading to an enhanced precipitation behavior of L12 phase. As a result of microstructural evolution, the mechanical properties of the aged HEAs changed: the Ni42Fe30Cr12Mn8Al5Ti3 alloy exhibits a better combination of a yield strength of 661 MPa and tensile ductility of 29.7% as compared to the 2 at.% Al alloyed HEA; and addition of Al beyond 5 at.% results in an increase of strength with a large expense of ductility. We believe that the present work is helpful for developing high-performance Co-free HEAs/MEAs strengthened by nanoprecipitates via composition optimizing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
风中的海雪完成签到,获得积分10
1秒前
CucRuotThua完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
1秒前
这个论文非写不可完成签到,获得积分10
1秒前
2秒前
ZZZpp发布了新的文献求助10
2秒前
2秒前
易伊澤发布了新的文献求助10
2秒前
饱满小兔子完成签到,获得积分10
3秒前
3秒前
共享精神应助phz采纳,获得10
4秒前
喵了个咪完成签到 ,获得积分10
4秒前
科研通AI5应助俭朴夜雪采纳,获得10
4秒前
4秒前
頑皮燕姿完成签到,获得积分10
4秒前
4秒前
丁德乐可发布了新的文献求助10
5秒前
Minkslion完成签到,获得积分10
5秒前
於松完成签到,获得积分10
5秒前
5秒前
yyyy发布了新的文献求助10
6秒前
稳重无剑完成签到,获得积分10
7秒前
wuha完成签到,获得积分10
7秒前
7秒前
欢喜从霜完成签到,获得积分10
8秒前
Orange应助LiShin采纳,获得10
8秒前
8秒前
欣慰友梅完成签到,获得积分10
8秒前
9秒前
llllllll发布了新的文献求助10
9秒前
9秒前
9秒前
CC完成签到,获得积分10
9秒前
wwuu发布了新的文献求助10
10秒前
shenyanlei发布了新的文献求助10
10秒前
一汁蟹发布了新的文献求助20
11秒前
大个应助绿麦盲区采纳,获得10
11秒前
雨齐完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762