Study on body area network of smart clothing for physiological monitoring

计算机科学 人体区域网 服装 可穿戴计算机 可穿戴技术 可靠性(半导体) 嵌入式系统 人机交互 无线传感器网络 计算机网络 功率(物理) 物理 考古 量子力学 历史
作者
Shen Lei,Xiangfang Ren,Jianbin Wu,Han Chen,Ouyang Jianyong
出处
期刊:International Journal of Distributed Sensor Networks [SAGE]
卷期号:18 (2): 155014772110612-155014772110612 被引量:4
标识
DOI:10.1177/15501477211061251
摘要

With the popularity of the concept of big health and the important role of wearable devices in medical health, users pay more attention to the collection and acquisition of physiological data, but wearable devices attached to human users are independent, and the degree of data sharing is low. Improving the data sharing, accuracy, and reliability of wearable device monitoring is a problem that the article needs to study and solve. Specifically, the researcher summarizes the characteristics of the physiological monitoring smart clothing, and the basic physiological data parameters of human body, and analyzes the collection of three basic signals of electrocardiogram, body temperature, and human movement. This article summarizes the requirements and key technologies of body area network transmission of smart clothing, and studies the body area network node design, energy consumption optimization mode, and network architecture of physiological monitoring smart clothing. At the same time, based on the previous research, the multi-interaction process of smart clothing is formed, and then the standard evaluation system of smart clothing body domain network for evaluation is proposed. The results show that the optimized structure of the body area network of smart clothing proposed by the researchers is efficient, convenient, and mobile, and meets the characteristics of safety, reliability, low power consumption, and portability of smart clothing, especially in the field of physiological monitoring. The standard evaluation system of smart clothing body area network provides a practice-oriented theoretical reference for the current research of smart clothing body area network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
morning完成签到,获得积分10
1秒前
拉多多发布了新的文献求助10
1秒前
黄豆酱发布了新的文献求助10
3秒前
Nick发布了新的文献求助30
3秒前
3秒前
Pavel发布了新的文献求助20
3秒前
爱静静应助ssss采纳,获得10
3秒前
4秒前
bkagyin应助Jm采纳,获得10
4秒前
Hello应助seesun采纳,获得10
4秒前
4秒前
kkk完成签到,获得积分10
5秒前
5秒前
凶狠的盼柳完成签到,获得积分10
6秒前
我不到啊完成签到,获得积分10
6秒前
6秒前
6秒前
slogan完成签到,获得积分10
6秒前
烟花应助111采纳,获得10
7秒前
7秒前
Harrisonhuang发布了新的文献求助200
7秒前
drywell完成签到,获得积分10
8秒前
DX完成签到,获得积分10
9秒前
动人的电灯胆完成签到 ,获得积分10
10秒前
漂洋过海发布了新的文献求助10
10秒前
Z_123应助Arloong采纳,获得10
10秒前
向上走跑跳完成签到,获得积分20
10秒前
splaker7发布了新的文献求助30
10秒前
Solaris完成签到,获得积分10
11秒前
xiao完成签到 ,获得积分10
11秒前
11秒前
自信的高山关注了科研通微信公众号
11秒前
11秒前
呆萌棒棒糖完成签到,获得积分10
13秒前
13秒前
cc发布了新的文献求助10
14秒前
陈大天才天才完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177679
求助须知:如何正确求助?哪些是违规求助? 2828718
关于积分的说明 7968296
捐赠科研通 2489861
什么是DOI,文献DOI怎么找? 1327316
科研通“疑难数据库(出版商)”最低求助积分说明 635206
版权声明 602888