萤火虫算法
PID控制器
控制器(灌溉)
直流电动机
计算机科学
MATLAB语言
控制理论(社会学)
人工神经网络
开环控制器
遗传算法
电子速度控制
控制工程
算法
控制(管理)
粒子群优化
人工智能
工程类
温度控制
机器学习
闭环
电气工程
操作系统
生物
农学
作者
Bapayya Naidu Kommula,Venkata Reddy Kota
标识
DOI:10.1016/j.seta.2022.102097
摘要
This paper proposes a Fractional purchase PID (FOPID) controller based on Firefly Algorithm-Artificial Neural Network (FA-ANN) to effectively control both the speed and torque of Brushless DC Motor (BLDCM). (BLDCM). The traditional PID controller produces sluggish response and is not efficient. In order to overcome the demerits associated with typical controller, an intelligent FOPID controller is proposed. A Modified Firefly Algorithm (FA) is implemented to attain ideal gain parameters of the proposed controller. To enhance MFF performance, the randomized parameters are updated by ANN. The proposed controller is simulated in Matlab/Simulink platform. The functional analysis of this proposed controller is demonstrated and compared with the existent schemes namely genetic algorithm GA-ANN and FA techniques. The experimental prototype with the intended technique is designed at the same time, and the results of the experiments are verified.
科研通智能强力驱动
Strongly Powered by AbleSci AI