姜黄素
线粒体
细胞凋亡
癌细胞
细胞生物学
化学
细胞
癌症研究
生物化学
生物
药理学
癌症
遗传学
作者
Wanyu Li,Yanan Chen,Kun He,Tianshou Cao,Daibo Song,Hanshuo Yang,Li Li,Jiantao Lin
标识
DOI:10.3389/fbioe.2022.804513
摘要
The mitochondrion is one of the most important cellular organelles, and many drugs work by acting on mitochondria. Curcumin (Cur)-induced apoptosis of HepG2 in liver cancer cells is closely related to the function of inhibiting mitochondria. However, the mitochondrion-targeting curcumin delivery system was rarely been reported. It is important to develop a high-efficiency mitochondrion-targeting curcumin vector that can deliver curcumin into mitochondria directly. Here, a special mitochondrion-targeting delivery system based on triphenylphosphine bromide (TPP)-chitosan-g-poly-(N-3-carbobenzyloxy-l-lysine) (CZL) with TPP functional on the surface is designed to perform highly efficient mitochondria-targeting delivery for effective liver cancer cell killing in vitro. The TEM images showed that the nanomicelles were spherical; the results of fluorescence test showed that TPP-CZL nanomicelles could promote the cellular uptake of drugs and finally targeted to the mitochondria. The results of cell survival rate and Hoechst staining showed that curcumin/TPP-CZL nanomicelles could promote the apoptosis of liver cancer cells. Curcumin/TPP-CZL nanomicelles could significantly reduce the mitochondrial membrane potential, increase the expression of pro apoptotic protein Bcl-2, and reduce the expression of antiapoptotic Bax protein, and these results were significantly better than curcumin/CZL nanomicelles and curcumin. It is a potential drug delivery system with high efficiency to target mitochondria of liver cancer cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI