Unsupervised malicious domain detection with less labeling effort

自编码 计算机科学 恶意软件 领域(数学分析) 人工智能 机器学习 集合(抽象数据类型) 数据挖掘 对策 特征(语言学) 极限(数学) 模式识别(心理学) 深度学习 计算机安全 工程类 程序设计语言 航空航天工程 哲学 数学分析 语言学 数学
作者
Huy Kang Kim,Hyun Min Song,Jeong Do Yoo,Suyoun Hong,Byungmo Cho,Kwangsoo Kim,Huy Kang Kim
出处
期刊:Computers & Security [Elsevier BV]
卷期号:116: 102662-102662 被引量:5
标识
DOI:10.1016/j.cose.2022.102662
摘要

Since malware creates severe damage to the system, past studies leveraged various algorithms to detect malicious domains generated from Domain Generation Algorithms (DGAs). Although they achieved a promising performance, security practitioners had to acquire a large amount of fine-labeled dataset with a particular effort. Throughout the research, we propose a series of analysis to build a novel malicious domain detection method with the autoencoder in an unsupervised approach to overcome this limit. The contributions of our study are as follows. First, we proposed significant feature extraction methods that focused on the domain’s linguistic patterns and validated the proposed set of features effectively discriminate benign domains and malicious domains. Second, we established a malicious domain detection method with the autoencoder only with benign domains provided during the model training. Thus, we let a security practitioner build a malicious domain detection model with less labeling effort. Third, the proposed malicious domain detection model achieved a precise detection performance of 99% accuracy and F1 score. Lastly, our model maintains the aforementioned detection performance, although it is trained with a small training set; thus, the model reduces training dataset accumulation effort. Although our detection model cannot identify malicious domains’ origins, particular types of DGA, we evaluate security practitioners can easily implement a countermeasure against DGAs with less effort. In pursuit of precise malicious domain detection, we expect our study can be a concrete baseline for future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助smldx采纳,获得10
刚刚
Always完成签到,获得积分10
1秒前
1秒前
memedaaaah发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
平常的迎夏完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
隐形曼青应助秋澄采纳,获得10
5秒前
5秒前
7秒前
xzn发布了新的文献求助10
7秒前
hahaha发布了新的文献求助10
7秒前
7秒前
青云冰城发布了新的文献求助10
8秒前
oo发布了新的文献求助10
8秒前
8秒前
不倒翁37发布了新的文献求助10
9秒前
cmdan完成签到,获得积分10
9秒前
蓝溺完成签到,获得积分10
10秒前
邵小庆发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
桐桐应助cc采纳,获得10
12秒前
等待吐司应助欢喜代萱采纳,获得10
12秒前
ss完成签到 ,获得积分10
12秒前
刘乐发布了新的文献求助10
12秒前
柳觅夏发布了新的文献求助10
12秒前
Lucas应助芜湖芜湖采纳,获得10
13秒前
HOOW发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961