清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification

计算机科学 人工智能 深度学习 遥感 土地覆盖 领域知识 编码器 领域(数学分析) 机器学习 土地利用 数据挖掘 地质学 工程类 数学分析 土木工程 操作系统 数学
作者
Yansheng Li,Yuhan Zhou,Yongjun Zhang,Liheng Zhong,Jian Wang,Jingdong Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 170-189 被引量:91
标识
DOI:10.1016/j.isprsjprs.2022.02.013
摘要

Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献蚂蚁完成签到,获得积分10
刚刚
真的OK完成签到,获得积分10
刚刚
洋芋饭饭完成签到,获得积分10
刚刚
美满惜寒完成签到,获得积分10
刚刚
朝夕之晖完成签到,获得积分10
1秒前
xiaowuge完成签到 ,获得积分10
16秒前
16秒前
小婷君发布了新的文献求助10
20秒前
guoguo完成签到,获得积分10
38秒前
李爱国应助小婷君采纳,获得10
42秒前
科研通AI2S应助Rayoo采纳,获得10
44秒前
45秒前
52秒前
pngyyyy发布了新的文献求助10
57秒前
王翎力完成签到,获得积分10
58秒前
毛毛完成签到,获得积分10
58秒前
相南相北完成签到 ,获得积分10
1分钟前
jiayoujijin完成签到 ,获得积分10
1分钟前
机灵雨完成签到 ,获得积分10
1分钟前
穿山的百足公主完成签到 ,获得积分10
1分钟前
1分钟前
小强完成签到 ,获得积分10
1分钟前
手可摘星陈同学完成签到 ,获得积分10
1分钟前
小婷君发布了新的文献求助10
1分钟前
Dreamhappy完成签到,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
Axs完成签到,获得积分10
1分钟前
1分钟前
theo完成签到 ,获得积分10
1分钟前
1分钟前
小二郎应助小婷君采纳,获得30
1分钟前
ommphey完成签到 ,获得积分10
1分钟前
柱子完成签到,获得积分10
1分钟前
2分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Bright24发布了新的文献求助30
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076026
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839