DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification

计算机科学 人工智能 深度学习 遥感 土地覆盖 领域知识 编码器 领域(数学分析) 机器学习 土地利用 数据挖掘 地质学 工程类 数学分析 土木工程 操作系统 数学
作者
Yansheng Li,Yuhan Zhou,Yongjun Zhang,Liheng Zhong,Jian Wang,Jingdong Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 170-189 被引量:101
标识
DOI:10.1016/j.isprsjprs.2022.02.013
摘要

Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李伟完成签到 ,获得积分10
1秒前
须眉交白完成签到,获得积分10
1秒前
淡然宝莹发布了新的文献求助10
4秒前
4秒前
哈基米德应助亚蛋超可爱采纳,获得20
4秒前
无辜南晴关注了科研通微信公众号
5秒前
杜不腾完成签到,获得积分10
5秒前
xing完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
10秒前
dild完成签到,获得积分10
10秒前
清枫发布了新的文献求助10
14秒前
李想完成签到,获得积分10
14秒前
彭于晏应助不喝牛奶的猫采纳,获得10
15秒前
15秒前
之星君完成签到,获得积分10
17秒前
19秒前
20秒前
浮游应助彪壮的雪晴采纳,获得10
21秒前
易晨曦完成签到 ,获得积分10
22秒前
22秒前
23秒前
打打应助endlessloop采纳,获得10
23秒前
无辜南晴发布了新的文献求助10
24秒前
25秒前
风息发布了新的文献求助10
26秒前
无情灯泡发布了新的文献求助10
26秒前
杜不腾发布了新的文献求助10
27秒前
念白发布了新的文献求助10
29秒前
科研通AI5应助jeesy采纳,获得10
31秒前
31秒前
31秒前
31秒前
谦让的博完成签到,获得积分10
31秒前
33秒前
APTACH完成签到,获得积分10
33秒前
33秒前
英吉利25发布了新的文献求助10
34秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219