已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification

计算机科学 人工智能 深度学习 遥感 土地覆盖 领域知识 编码器 领域(数学分析) 机器学习 土地利用 数据挖掘 地质学 工程类 数学分析 土木工程 操作系统 数学
作者
Yansheng Li,Yuhan Zhou,Yongjun Zhang,Liheng Zhong,Jian Wang,Jingdong Chen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 170-189 被引量:80
标识
DOI:10.1016/j.isprsjprs.2022.02.013
摘要

Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的如霜完成签到,获得积分20
刚刚
刚刚
小二郎应助瑾昭采纳,获得10
1秒前
爆米花应助liweiDr采纳,获得10
4秒前
zzz发布了新的文献求助30
6秒前
kk完成签到 ,获得积分20
6秒前
小马甲应助jeep先生采纳,获得10
7秒前
Akim应助Catherine采纳,获得10
8秒前
9秒前
科研通AI2S应助搞怪柔采纳,获得10
13秒前
13秒前
beloved完成签到 ,获得积分10
14秒前
此去经年发布了新的文献求助10
15秒前
运气爆棚关注了科研通微信公众号
16秒前
17秒前
lucygaga完成签到 ,获得积分10
18秒前
英勇的汉堡关注了科研通微信公众号
20秒前
liweiDr发布了新的文献求助10
22秒前
朴素绿真完成签到,获得积分10
23秒前
kjding发布了新的文献求助10
24秒前
丘比特应助邹修坤采纳,获得10
28秒前
外向的音响完成签到,获得积分10
30秒前
30秒前
小巧曲奇完成签到,获得积分10
34秒前
田様应助张咸鱼采纳,获得30
35秒前
开心凌柏完成签到,获得积分10
35秒前
46秒前
46秒前
廖述祥发布了新的文献求助10
48秒前
星月完成签到 ,获得积分10
50秒前
52秒前
含蓄的觅海完成签到,获得积分10
57秒前
能干的心锁完成签到 ,获得积分10
59秒前
WLL完成签到,获得积分20
1分钟前
nanda完成签到,获得积分10
1分钟前
1分钟前
ding应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109