乙二醇
催化作用
锰
电催化剂
尖晶石
X射线光电子能谱
化学
无机化学
电流密度
活化能
纳米颗粒
材料科学
核化学
分析化学(期刊)
电化学
物理化学
有机化学
纳米技术
冶金
化学工程
电极
工程类
物理
量子力学
生物化学
色谱法
作者
Noé Arjona,F. Espinosa‐Magaña,Jennifer A. Bañuelos,Lorena Álvarez‒Contreras,Minerva Guerra‐Balcázar
标识
DOI:10.1002/celc.202200015
摘要
Abstract Incorporation of α‐MnO 2 and Mn 3 O 4 during the synthesis of Pd nanoparticles promoted better particle anchoring. Especially the Mn single spinel (Mn 3 O 4 ) decreased the Pd particle size from ∼10 nm (obtained for Pd/C and Pd/α‐MnO 2 ) to 4.4 nm. HR‐TEM and XPS analysis confirmed electronic changes from a better interaction between Pd and Mn 3 O 4 , decreasing the energy barriers for alcohol oxidation, obtaining the lowest apparent activation energy (15.54 kJ mol −1 ) and resistance to charge transfer (1.44 Ω cm 2 ). The Pd/Mn 3 O 4 /C electrocatalyst displayed a current density of 334.74 mA cm −2 at 2 M EG+2 M KOH with an onset potential of −0.32 V vs . NHE. This current density was 2.2 and 3.6‐fold higher than that obtained using Pd/C and Pd/α‐MnO 2 /C. Further tests using sorbitol and glycerol as fuels revealed that maximum current densities of 255.2 and 472.9 mA cm −2 can be achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI