神经形态工程学
记忆电阻器
材料科学
光电子学
双层
X射线光电子能谱
透射电子显微镜
纳米技术
电子工程
计算机科学
人工神经网络
化学工程
化学
工程类
机器学习
生物化学
膜
作者
Aftab Saleem,Dayanand Kumar,Amit Singh,Sailesh Rajasekaran,Tseung‐Yuen Tseng
标识
DOI:10.1002/admt.202101208
摘要
Abstract In this work, a reliable bilayer flexible memristor is demonstrated using TaO x /HfO x Bi‐layer (BL) to mimic synaptic characteristics by using oxygen concentration engineering in the oxide layers. Due to low Gibbs free energy of TaO x layer and stable properties of the single layer memristor, TaO x is inserted in the HfO x ‐based memristor for making the BL flexible device. Such device exhibits stable gradual switching behavior with low set/reset voltages (1 V/ − 1 V) and multilevel cell characteristic making it favorable for synaptic application. The presence of oxide layers and change in oxygen vacancy concentration in two layers are examined by transmission electron microscopy and X‐ray photoelectron spectroscopy, respectively. Further, the device shows potentiation and depression epochs for more than 10 000 pulses and switching up to bending radius of 4 mm for 1000 bending cycles. The device mimics biological synaptic time‐dependent plasticity (STDP) operation when presynaptic and postsynaptic pulses are applied on top and bottom electrodes, respectively. The relationship between nonlinearity coefficient and control parameters in STDP is derived and established. It achieves more that 96% accuracy only after 20 iterations for neuromorphic application when a system of 2500 synapses incorporating 50 × 50 pixel image for recognition is deployed.
科研通智能强力驱动
Strongly Powered by AbleSci AI