Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling

工艺工程 高温电解 堆栈(抽象数据类型) 电解 电力转天然气 电解槽 甲烷化 计算机科学 环境科学 材料科学 甲烷 工程类 化学 电解质 电极 物理化学 有机化学 程序设计语言
作者
Lukas Wehrle,Daniel Schmider,Julian Dailly,Aayan Banerjee,Olaf Deutschmann
出处
期刊:Applied Energy [Elsevier BV]
卷期号:317: 119143-119143 被引量:14
标识
DOI:10.1016/j.apenergy.2022.119143
摘要

Power-to-Gas (PtG) is prognosticated to realize large capacity increases and create substantial revenues within the next decade. Due to their inherently high efficiencies, solid oxide electrolysis cells (SOECs) have the potential to become one of the core technologies in PtG applications. While thermal integration of the high-temperature SOEC module with downstream exothermic methanation is a very potent concept, the performance of SOECs needs to be boosted to amplify the technologies impact for future large-scale plants. Here, we use a combined experimental and modelling approach to benchmark commercial electrolyte- (ESC) and cathode-supported cell (CSC) designs on industrial-scale planar SOEC stack performance. In a first step, comprehensive electrochemical and microstructural analyses are carried out to parametrize, calibrate and validate a detailed multi-physics 2D cell model, which is then used to study the cells’ behaviour in detail. The analysis reveals that there exists a cell-specific threshold steam conversion of ∼80% for the ESC and ∼75% for the CSC design, which represents a maximum of the total (heat plus electrical) electrolysis efficiency. Moreover, while the ESC-design suffers from performance reductions under pressurized conditions, considerable performance increases of ∼9% at 20 atm (700 °C, 1.35 V) compared to atmospheric pressure are predicted for the CSC design, showcasing a unique advantage of the CSC cell for process integration with the catalytic methanation. Subsequently, based on a 3D stack model, a scale-up to the industrial stack size is conducted. To comparatively assess stack performances under application-oriented conditions, optimization studies are carried out for 150-cell stack units based on the two cell designs individually. When optimally selecting the stack operation points, the model predicts the CSC-based stack to reach a high capacity up to 36.6 kW (∼10.6 Nm3 H2 h−1) at 1.35 V and 700 °C, whilst ensuring reasonably low temperature gradients (<10 K cm−1) and sweep gas cooling requirements (<30 sccm cm−2). Thus, CSC-design stacks incorporating such a highly active cell design can be expected to further boost the competitiveness of high-temperature electrolysis in PtG plant concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助幸福的善若采纳,获得10
刚刚
Swu完成签到,获得积分10
刚刚
晨曦完成签到,获得积分10
刚刚
1秒前
ZL张莉发布了新的文献求助10
1秒前
1秒前
cherlie应助牛轧唐采纳,获得10
1秒前
666666666666666完成签到 ,获得积分10
2秒前
典雅的静发布了新的文献求助10
2秒前
爆米花应助妮可采纳,获得10
2秒前
Rondab应助哇哈哈采纳,获得10
2秒前
2秒前
2秒前
望开心顺利毕业完成签到,获得积分10
2秒前
宇老师完成签到,获得积分10
2秒前
小郭小郭福气多多完成签到,获得积分10
3秒前
Aquilus发布了新的文献求助10
3秒前
阿凉完成签到,获得积分20
3秒前
Orange应助Robert采纳,获得10
3秒前
3秒前
lym97发布了新的文献求助10
4秒前
欢呼雁完成签到,获得积分10
4秒前
木木完成签到,获得积分10
5秒前
5秒前
濛嘻嘻发布了新的文献求助10
5秒前
5秒前
有问题发布了新的文献求助10
5秒前
yysghr发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
哈哈哈发布了新的文献求助10
8秒前
可爱的函函应助勤恳思卉采纳,获得10
8秒前
lin发布了新的文献求助10
10秒前
时倾发布了新的文献求助10
10秒前
panpan发布了新的文献求助10
10秒前
田様应助zaadasd采纳,获得10
11秒前
Joefish完成签到,获得积分10
11秒前
11秒前
labxgr发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344