A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture

多重共线性 污染物 环境流行病学 可解释性 统计 统计模型 计量经济学 环境卫生 环境污染 计算机科学 环境科学 风险分析(工程) 回归分析 数学 机器学习 医学 环境保护 生物 生态学
作者
Linling Yu,Wei Liu,Xing Wang,Zi Ye,Qiyou Tan,Weihong Qiu,Xiuquan Nie,Minjing Li,Bin Wang,Weihong Chen
出处
期刊:Environmental Pollution [Elsevier]
卷期号:306: 119356-119356 被引量:103
标识
DOI:10.1016/j.envpol.2022.119356
摘要

Environmental risk factors have been implicated in adverse health effects. Previous epidemiological studies on environmental risk factors mainly analyzed the impact of single pollutant exposure on health, while in fact, humans are constantly exposed to a complex mixture consisted of multiple pollutants/chemicals. In recent years, environmental epidemiologists have sought to assess adverse health effects of exposure to multi-pollutant mixtures based on the diversity of real-world environmental pollutants. However, the statistical challenges are considerable, for instance, multicollinearity and interaction among components of the mixture complicate the statistical analysis. There is currently no consensus on appropriate statistical methods. Here we summarized the practical statistical methods used in environmental epidemiology to estimate health effects of exposure to multi-pollutant mixture, such as Bayesian kernel machine regression (BKMR), weighted quantile sum (WQS) regressions, shrinkage methods (least absolute shrinkage and selection operator, elastic network model, adaptive elastic-net model, and principal component analysis), environment-wide association study (EWAS), etc. We sought to review these statistical methods and determine the application conditions, strengths, weaknesses, and result interpretability of each method, providing crucial insight and assistance for addressing epidemiological statistical issues regarding health effects from multi-pollutant mixture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科目三应助如意的向彤采纳,获得10
1秒前
CipherSage应助最触动的阳光采纳,获得10
1秒前
orixero应助c程序语言采纳,获得30
1秒前
打打应助shi采纳,获得10
3秒前
3秒前
4秒前
沉默寄风完成签到,获得积分10
4秒前
星辰大海应助Jerry采纳,获得10
4秒前
CipherSage应助Yiphy采纳,获得10
5秒前
坚果应助wpie99采纳,获得10
5秒前
会会发布了新的文献求助10
5秒前
小伙子完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
乐乐应助Gyrate采纳,获得10
8秒前
CodeCraft应助六个核桃采纳,获得10
8秒前
8秒前
GRATE完成签到 ,获得积分10
9秒前
妮妮发布了新的文献求助10
9秒前
熹熹发布了新的文献求助10
10秒前
10秒前
psj完成签到,获得积分10
10秒前
11秒前
11秒前
傲慢葫芦发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
善学以致用应助小芒果采纳,获得10
13秒前
陶治发布了新的文献求助10
14秒前
14秒前
14秒前
酷波er应助彳亍采纳,获得10
15秒前
吉祥应助和谐代灵采纳,获得30
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042