Automated Disaster Monitoring From Social Media Posts Using AI-Based Location Intelligence and Sentiment Analysis

社会化媒体 计算机科学 情绪分析 自然灾害 人工智能 精确性和召回率 应急管理 机器学习 数据科学 自然语言处理 万维网 地理 政治学 气象学 法学
作者
Fahim Sufi,Ibrahim Khalil
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:30
标识
DOI:10.1109/tcss.2022.3157142
摘要

Worldwide disasters like bushfires, earthquakes, floods, cyclones, and heatwaves have affected the lives of social media users in an unprecedented manner. They are constantly posting their level of negativity over the disaster situations at their location of interest. Understanding location-oriented sentiments about disaster situation is of prime importance for political leaders, and strategic decision-makers. To this end, we present a new fully automated algorithm based on artificial intelligence (AI) and natural language processing (NLP), for extraction of location-oriented public sentiments on global disaster situation. We designed the proposed system to obtain exhaustive knowledge and insights on social media feeds related to disaster in 110 languages through AI- and NLP-based sentiment analysis, named entity recognition (NER), anomaly detection, regression, and Getis Ord Gi* algorithms. We deployed and tested this algorithm on live Twitter feeds from 28 September to 6 October 2021. Tweets with 67 515 entities in 39 different languages were processed during this period. Our novel algorithm extracted 9727 location entities with greater than 70% confidence from live Twitter feed and displayed the locations of possible disasters with disaster intelligence. The rates of average precision, recall, and F₁-Score were measured to be 0.93, 0.88, and 0.90, respectively. Overall, the fully automated disaster monitoring solution demonstrated 97% accuracy. To the best of our knowledge, this study is the first to report location intelligence with NER, sentiment analysis, regression and anomaly detection on social media messages related to disasters and has covered the largest set of languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的书文完成签到,获得积分10
1秒前
V_I_G完成签到,获得积分10
3秒前
甜甜圈完成签到 ,获得积分10
3秒前
川上富江完成签到 ,获得积分10
7秒前
清风完成签到 ,获得积分10
7秒前
窝窝头完成签到 ,获得积分10
8秒前
疯狂的科研小羊完成签到 ,获得积分10
10秒前
10秒前
思明完成签到 ,获得积分10
11秒前
Lucas应助研友_Z33pmZ采纳,获得10
12秒前
13秒前
14秒前
虞无声发布了新的文献求助10
15秒前
真实的储发布了新的文献求助10
15秒前
17秒前
楠瓜完成签到,获得积分10
17秒前
和谐的醉山完成签到,获得积分10
22秒前
zain完成签到 ,获得积分10
22秒前
Deila完成签到 ,获得积分0
23秒前
王金娥完成签到,获得积分10
23秒前
在水一方应助xinxin采纳,获得10
24秒前
....发布了新的文献求助10
25秒前
Leo完成签到 ,获得积分10
26秒前
27秒前
CDQ完成签到,获得积分10
27秒前
不要在卷啦完成签到 ,获得积分10
29秒前
30秒前
Andrew02完成签到,获得积分10
32秒前
SinU应助LioXH采纳,获得10
33秒前
34秒前
自然的人杰完成签到,获得积分10
34秒前
上官若男应助wjw采纳,获得10
34秒前
34秒前
mango524完成签到,获得积分10
34秒前
科研小lese完成签到,获得积分10
35秒前
wsq完成签到,获得积分10
35秒前
重要的溪流完成签到,获得积分10
35秒前
成就的冰绿完成签到,获得积分10
35秒前
37秒前
ytolll完成签到,获得积分20
37秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711424
捐赠科研通 2427554
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169