Active Video Game on Children and Adolescents' Physical Activity and Weight Management: A Network Meta‐Analysis

荟萃分析 随机对照试验 医学 物理疗法 心理干预 内科学 精神科
作者
Robin S.T. Ho,Eddie Ka‐Yui Chan,Kenneth Kang‐Yue Liu,Stephen Heung‐Sang Wong
出处
期刊:Scandinavian Journal of Medicine & Science in Sports [Wiley]
卷期号:32 (8): 1268-1286 被引量:9
标识
DOI:10.1111/sms.14176
摘要

We synthesized evidence on the effectiveness of active video games (AVGs) versus no AVG-applied comparators on various physical activity (PA) levels and weight management outcomes in children and adolescents. We analyzed the comparative evidence on different sub-categories of AVGs and ranking the best option. An overview of systematic reviews (SRs) and network meta-analysis (NMA) (PROSPERO: CRD42021248499) was employed. A search for relevant literature published in English was conducted in six electronic databases from their inception until April 2021. SRs consisting of randomized control trials (RCTs) and satisfying our PICOS inclusion criteria were included. RCTs included were a comparison of groups among children and adolescents between 6 and 21, where groups with AVG interventions were compared with groups without them. Direct head-to-head pairwise meta-analyses were conducted using weighted mean difference between the two groups, and the comparative effectiveness of different sub-categories of AVGs was analyzed indirectly using NMA. Overall, 17 SRs were identified from the 6036 screened citations. Of these, 350 citations were retrieved, and 12 RCTs were finally included. Compared with no AVG group, AVG groups were shown to be more effective in achieving vigorous, moderate-to-vigorous, and moderate PA levels, and decreased BMI and body fat. NMA showed that rhythmic dance games had the highest probability of being the most effective sub-category for reducing BMI. AVGs are effective in attaining vigorous, moderate to vigorous, and moderate PA levels, and reducing BMI and body fat among children and adolescents. Dance appears to be the best option for reducing BMI among AVG subcategories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜青完成签到,获得积分10
2秒前
lalala应助w_采纳,获得20
2秒前
晨曦完成签到,获得积分20
3秒前
科研通AI2S应助1111采纳,获得10
3秒前
稳重语风完成签到,获得积分10
8秒前
8秒前
阳光的沉鱼完成签到,获得积分10
8秒前
科研通AI2S应助gzsy采纳,获得10
9秒前
zzk发布了新的文献求助10
10秒前
完美世界应助一切都好采纳,获得10
11秒前
11秒前
白桃完成签到 ,获得积分10
12秒前
Hyl完成签到 ,获得积分10
12秒前
科研通AI2S应助朴次次采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
jjj发布了新的文献求助10
15秒前
Owen应助科研通管家采纳,获得30
15秒前
直率的画笔完成签到,获得积分10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
Candice应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
干羞花完成签到,获得积分10
16秒前
zzk完成签到,获得积分20
17秒前
18秒前
CC发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
调研昵称发布了新的文献求助10
21秒前
热热发布了新的文献求助10
21秒前
22秒前
windcreator发布了新的文献求助10
24秒前
qiuyue完成签到,获得积分10
24秒前
qiming完成签到,获得积分10
25秒前
XIN发布了新的文献求助10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262616
求助须知:如何正确求助?哪些是违规求助? 2903260
关于积分的说明 8324635
捐赠科研通 2573293
什么是DOI,文献DOI怎么找? 1398181
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642