Asynchronous Federated Learning Over Wireless Communication Networks

计算机科学 异步通信 无线 分布式计算 异步学习 无线网络 计算机网络 电信 同步学习 合作学习 政治学 教学方法 法学
作者
Zhongyu Wang,Zhaoyang Zhang,Yuqing Tian,Qianqian Yang,Hangguan Shan,Wei Wang,Tony Q. S. Quek
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (9): 6961-6978 被引量:58
标识
DOI:10.1109/twc.2022.3153495
摘要

The conventional federated learning (FL) framework usually assumes synchronous reception and fusion of all the local models at the central aggregator and synchronous updating and training of the global model at all the agents as well. However, in a wireless network, due to limited radio resource, inevitable transmission failures and heterogeneous computing capacity, it is very hard to realize strict synchronization among all the involved user equipments (UEs). In this paper, we propose a novel asynchronous FL framework, which well adapts to the heterogeneity of users, communication environments and learning tasks, by considering both the possible delays in training and uploading the local models and the resultant staleness among the received models that has heavy impact on the global model fusion. A novel centralized fusion algorithm is designed to determine the fusion weight during the global update, which aims to make full use of the fresh information contained in the uploaded local models while avoiding the biased convergence by enforcing the impact of each UE's local dataset to be proportional to its sample share. Numerical experiments validate that the proposed asynchronous FL framework can achieve fast and smooth convergence and enhance the training efficiency significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
七七八八完成签到,获得积分10
3秒前
3秒前
living笑白发布了新的文献求助10
3秒前
4秒前
哦哦耶耶发布了新的文献求助10
4秒前
husaheng发布了新的文献求助10
4秒前
听雨发布了新的文献求助10
5秒前
5秒前
南笙发布了新的文献求助10
5秒前
AptRank发布了新的文献求助10
6秒前
7秒前
已知中的未知完成签到 ,获得积分10
7秒前
SYLH应助zyo515采纳,获得30
8秒前
10秒前
Ashley完成签到,获得积分10
11秒前
11秒前
DY发布了新的文献求助10
11秒前
stszd完成签到,获得积分10
12秒前
轻爱发布了新的文献求助10
12秒前
彼岸完成签到,获得积分10
12秒前
Orange应助husaheng采纳,获得10
13秒前
13秒前
living笑白完成签到,获得积分10
13秒前
14秒前
14秒前
搞对发布了新的文献求助10
15秒前
酷炫素发布了新的文献求助10
15秒前
16秒前
兆兆完成签到 ,获得积分10
17秒前
17秒前
ZeZeZe发布了新的文献求助10
18秒前
18秒前
在水一方应助redion采纳,获得10
19秒前
AptRank完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
irochi发布了新的文献求助10
21秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204