Prediction of Thermal Properties of Zeolites through Machine Learning

概化理论 机器学习 计算机科学 人工智能 调和平均 梯度升压 Boosting(机器学习) 热的 算法 数学 几何学 热力学 物理 统计 随机森林
作者
Maxime Ducamp,François‐Xavier Coudert
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:126 (3): 1651-1660 被引量:18
标识
DOI:10.1021/acs.jpcc.1c09737
摘要

The use of machine learning for the prediction of physical and chemical properties of crystals based on their structure alone is currently an area of intense research in computational materials science. In this work, we studied the possibility of using machine-learning-trained algorithms in order to calculate the thermal properties of siliceous zeolite frameworks. We used as training data the thermal properties of 120 zeolites, calculated at the DFT level, in the quasi-harmonic approximation. We compared the statistical accuracy of trained models (based on the gradient-boosting regression technique) using different types of descriptors, including ad hoc geometrical features, topology, pore space, and general geometric descriptors. While geometric descriptors were found to perform best, we also identified limitations on the accuracy of the predictions, especially for a small group of materials with very highly negative thermal expansion coefficients. We then studied the generalizability of the technique, demonstrating that the predictions were not sensitive to the refinement of framework structures at a high level of theory. Therefore, the models are suitable for the exploration and screening of large-scale databases of hypothetical frameworks, which we illustrate on the PCOD2 database of zeolites containing around 600 000 hypothetical structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比巴卜完成签到,获得积分10
刚刚
star完成签到 ,获得积分10
刚刚
风中以菱发布了新的文献求助10
刚刚
田様应助lbx采纳,获得10
刚刚
刚刚
成就幼荷发布了新的文献求助10
刚刚
zpbb完成签到,获得积分10
1秒前
MoleMed发布了新的文献求助10
1秒前
1秒前
1秒前
领导范儿应助miaoww采纳,获得10
2秒前
DXXX完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
character577完成签到,获得积分10
2秒前
王汉韬完成签到,获得积分20
2秒前
2秒前
文泽完成签到,获得积分10
3秒前
hu970发布了新的文献求助10
3秒前
震动的听枫完成签到,获得积分10
3秒前
丘比特应助wzg666采纳,获得10
3秒前
3秒前
不二完成签到,获得积分10
3秒前
璇璇完成签到 ,获得积分10
4秒前
深情安青应助郑开司09采纳,获得10
4秒前
4秒前
5秒前
杨杨杨发布了新的文献求助10
5秒前
AA发布了新的文献求助10
5秒前
哎呀妈呀发布了新的文献求助10
5秒前
5秒前
活力雁枫完成签到,获得积分10
6秒前
封尘逸动完成签到,获得积分10
6秒前
Khr1stINK发布了新的文献求助10
7秒前
Water103发布了新的文献求助10
7秒前
7秒前
彩色的德地完成签到,获得积分10
7秒前
ddd完成签到,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672