JAS-GAN: Generative Adversarial Network Based Joint Atrium and Scar Segmentations on Unbalanced Atrial Targets

分割 人工智能 计算机科学 疤痕 模式识别(心理学) 计算机视觉 医学 外科
作者
Jun Chen,Guang Yang,Habib R. Khan,Heye Zhang,Yanping Zhang,Shu Zhao,Raad Mohiaddin,Tom Wong,David Firmin,Jennifer Keegan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 103-114 被引量:44
标识
DOI:10.1109/jbhi.2021.3077469
摘要

Automated and accurate segmentations of left atrium (LA) and atrial scars from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images are in high demand for quantifying atrial scars. The previous quantification of atrial scars relies on a two-phase segmentation for LA and atrial scars due to their large volume difference (unbalanced atrial targets). In this paper, we propose an inter-cascade generative adversarial network, namely JAS-GAN, to segment the unbalanced atrial targets from LGE CMR images automatically and accurately in an end-to-end way. Firstly, JAS-GAN investigates an adaptive attention cascade to automatically correlate the segmentation tasks of the unbalanced atrial targets. The adaptive attention cascade mainly models the inclusion relationship of the two unbalanced atrial targets, where the estimated LA acts as the attention map to adaptively focus on the small atrial scars roughly. Then, an adversarial regularization is applied to the segmentation tasks of the unbalanced atrial targets for making a consistent optimization. It mainly forces the estimated joint distribution of LA and atrial scars to match the real ones. We evaluated the performance of our JAS-GAN on a 3D LGE CMR dataset with 192 scans. Compared with the state-of-the-art methods, our proposed approach yielded better segmentation performance (Average Dice Similarity Coefficient (DSC) values of 0.946 and 0.821 for LA and atrial scars, respectively), which indicated the effectiveness of our proposed approach for segmenting unbalanced atrial targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yu采纳,获得10
1秒前
1秒前
2秒前
3秒前
科研通AI6应助xmingpsy采纳,获得10
3秒前
3秒前
3秒前
华仔应助李楼村采纳,获得10
4秒前
科研通AI6应助xiaofeifantasy采纳,获得10
4秒前
5秒前
5秒前
tongguang发布了新的文献求助10
5秒前
咖啡豆发布了新的文献求助200
6秒前
我是老大应助faye采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
SciGPT应助152van采纳,获得10
7秒前
鲤鱼酸奶发布了新的文献求助20
8秒前
8秒前
科研通AI6应助杨紫宸采纳,获得10
8秒前
高兴断秋发布了新的文献求助10
9秒前
静待花开发布了新的文献求助10
9秒前
10秒前
一条纤维化的鱼完成签到,获得积分10
10秒前
文静的跳跳糖完成签到,获得积分10
10秒前
10秒前
10秒前
机智冬灵完成签到,获得积分10
11秒前
朱妙彤发布了新的文献求助10
11秒前
韩野发布了新的文献求助10
11秒前
12秒前
超级李包包完成签到,获得积分10
13秒前
14秒前
14秒前
科研通AI6应助zzq采纳,获得10
14秒前
14秒前
专虐白榨菜完成签到,获得积分10
15秒前
哈哈哈发布了新的文献求助10
15秒前
fwx1997发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906