JAS-GAN: Generative Adversarial Network Based Joint Atrium and Scar Segmentations on Unbalanced Atrial Targets

分割 人工智能 计算机科学 疤痕 模式识别(心理学) 计算机视觉 医学 外科
作者
Jun Chen,Guang Yang,Habib R. Khan,Heye Zhang,Yanping Zhang,Shu Zhao,Raad Mohiaddin,Tom Wong,David Firmin,Jennifer Keegan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 103-114 被引量:44
标识
DOI:10.1109/jbhi.2021.3077469
摘要

Automated and accurate segmentations of left atrium (LA) and atrial scars from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images are in high demand for quantifying atrial scars. The previous quantification of atrial scars relies on a two-phase segmentation for LA and atrial scars due to their large volume difference (unbalanced atrial targets). In this paper, we propose an inter-cascade generative adversarial network, namely JAS-GAN, to segment the unbalanced atrial targets from LGE CMR images automatically and accurately in an end-to-end way. Firstly, JAS-GAN investigates an adaptive attention cascade to automatically correlate the segmentation tasks of the unbalanced atrial targets. The adaptive attention cascade mainly models the inclusion relationship of the two unbalanced atrial targets, where the estimated LA acts as the attention map to adaptively focus on the small atrial scars roughly. Then, an adversarial regularization is applied to the segmentation tasks of the unbalanced atrial targets for making a consistent optimization. It mainly forces the estimated joint distribution of LA and atrial scars to match the real ones. We evaluated the performance of our JAS-GAN on a 3D LGE CMR dataset with 192 scans. Compared with the state-of-the-art methods, our proposed approach yielded better segmentation performance (Average Dice Similarity Coefficient (DSC) values of 0.946 and 0.821 for LA and atrial scars, respectively), which indicated the effectiveness of our proposed approach for segmenting unbalanced atrial targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边港洋发布了新的文献求助10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
笨男孩发布了新的文献求助10
3秒前
4秒前
4秒前
wanghao发布了新的文献求助10
4秒前
陈湫完成签到,获得积分10
5秒前
田様应助等待的寒松采纳,获得10
5秒前
害怕的白竹完成签到,获得积分10
6秒前
随心完成签到,获得积分10
6秒前
怕孤单的嚣完成签到,获得积分20
6秒前
lcxw1224完成签到,获得积分10
6秒前
7秒前
长常九久发布了新的文献求助10
8秒前
15503116087发布了新的文献求助10
8秒前
大个应助初之采纳,获得10
9秒前
te发布了新的文献求助10
9秒前
边港洋完成签到,获得积分10
11秒前
11秒前
凤羽发布了新的文献求助10
12秒前
灵巧听露发布了新的文献求助10
12秒前
可爱的函函应助猫猫无敌采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
爆米花应助刁弘睿采纳,获得10
16秒前
16秒前
16秒前
缥缈海云完成签到,获得积分10
16秒前
17秒前
斯文败类应助沙场秋点兵采纳,获得10
18秒前
123完成签到,获得积分10
18秒前
19秒前
无辜问玉发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425