已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Stage Dynamic Optimization on Station-to-Door Delivery with Uncertain Freight Operation Time in Urban Logistics

匹配(统计) 计算机科学 运输工程 运筹学 路径(计算) 平面图(考古学) 集合(抽象数据类型) 阶段(地层学) 工程类 计算机网络 古生物学 统计 数学 考古 生物 历史 程序设计语言
作者
Zhiyuan Li,Chen‐Hao Wang,Jie Zhang,Ming‐Hua Zeng,Pengpeng Xu,Zongying Song,Ni Dong
出处
期刊:Journal of urban planning and development [American Society of Civil Engineers]
卷期号:148 (3) 被引量:3
标识
DOI:10.1061/(asce)up.1943-5444.0000853
摘要

In the field of modern urban logistics, the development of door-to-door freight transport through rail–road combined transportation is a necessary approach to achieve modernization and smartness of railroad freight transportation. As the last step of door-to-door rail–road joint transportation, station-to-door transportation determines the quality and efficiency of services. Meanwhile, the operation time of goods assembly is uncertain in the freight center station, freight handling station, and in transit, which largely limits the efficiency of rail–road combined transportation delivery at the stage of station-to-door. To address the aforementioned problems, we proposed a forward-looking matching strategy (FL) that jointly considers the set of goods orders that can be fulfilled in the current decision stage and the set of goods orders that can only be fulfilled in the future stage to improve the matching effect. Then, we built a two-stage stochastic dynamic programming model that jointly considers matching between goods orders and distribution path optimization. At the same time, we simplified the complex model by using a Bayesian approach to update the goods' operation time in real time. Finally, we designed an improved differential evolution algorithm based on order similarity and distribution for solving the optimization. The algorithm we designed reduces 34.69% in transportation cost and 31.37% in waiting time cost compared with the actual delivery plan implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性妙菱完成签到,获得积分10
3秒前
毅诚菌完成签到,获得积分10
5秒前
lzx完成签到,获得积分10
6秒前
7秒前
080206ws发布了新的文献求助10
8秒前
小李完成签到 ,获得积分10
8秒前
11秒前
典雅问寒应助雨辰采纳,获得200
11秒前
幼升小完成签到,获得积分10
13秒前
Lucas应助Jello采纳,获得10
15秒前
Thea发布了新的文献求助50
16秒前
如初完成签到,获得积分10
16秒前
共享精神应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
LIU完成签到 ,获得积分10
21秒前
小慧儿完成签到 ,获得积分10
21秒前
Avery完成签到 ,获得积分20
21秒前
wanci应助书枫哥哥采纳,获得10
24秒前
26秒前
kisaragiidu完成签到,获得积分10
27秒前
文章来文章来给文章来文章来的求助进行了留言
27秒前
小蘑菇应助MrU采纳,获得50
27秒前
30秒前
学术嬴政完成签到,获得积分10
30秒前
方断秋发布了新的文献求助10
32秒前
33秒前
乐乐应助露亮采纳,获得10
34秒前
小蘑菇应助露亮采纳,获得10
34秒前
Lucas应助露亮采纳,获得10
34秒前
深情安青应助露亮采纳,获得10
34秒前
35秒前
炸鸡加热完成签到 ,获得积分10
36秒前
桐月十六发布了新的文献求助10
37秒前
尘世迷途小书童完成签到,获得积分10
37秒前
小蘑菇应助化学采纳,获得10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733246
求助须知:如何正确求助?哪些是违规求助? 3277407
关于积分的说明 10002404
捐赠科研通 2993270
什么是DOI,文献DOI怎么找? 1642581
邀请新用户注册赠送积分活动 780542
科研通“疑难数据库(出版商)”最低求助积分说明 748892