亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CT

医学 神经组阅片室 接收机工作特性 假阳性悖论 介入放射学 放射科 核医学 算法 人工智能 计算机科学 神经学 内科学 精神科
作者
Shunjiro Noguchi,Mizuho Nishio,Ryo Sakamoto,Masahiro Yakami,Koji Fujimoto,Yutaka Emoto,Takeshi Kubo,Yoshio Iizuka,Keita Nakagomi,Kazuhiro Miyasa,Kiyohide Satoh,Yuji Nakamoto
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (11): 7976-7987 被引量:28
标识
DOI:10.1007/s00330-022-08741-3
摘要

ObjectivesTo develop and evaluate a deep learning–based algorithm (DLA) for automatic detection of bone metastases on CT.MethodsThis retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance.ResultsA total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004).ConclusionWith the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time.Key Points• A deep learning–based algorithm for automatic detection of bone metastases on CT was developed.• In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm.• Radiologists’ interpretation time decreased at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
18秒前
21秒前
晓晓发布了新的文献求助150
26秒前
在水一方应助81299采纳,获得10
32秒前
彩虹儿应助琉忆采纳,获得10
50秒前
晓晓完成签到,获得积分10
50秒前
52秒前
CoCoco完成签到 ,获得积分10
53秒前
nito发布了新的文献求助10
54秒前
平常的三问完成签到 ,获得积分10
55秒前
55秒前
zzr发布了新的文献求助30
57秒前
81299发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
81299完成签到,获得积分20
1分钟前
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
思源应助畅快的涵蕾采纳,获得10
1分钟前
海派Hi完成签到 ,获得积分10
1分钟前
1分钟前
李健应助皮托采纳,获得10
2分钟前
追寻的纸鹤完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
皮托发布了新的文献求助10
2分钟前
汉堡包应助Jayden采纳,获得10
2分钟前
情怀应助Jayden采纳,获得10
2分钟前
king完成签到 ,获得积分10
2分钟前
2分钟前
Jayden发布了新的文献求助10
3分钟前
ETA完成签到,获得积分10
3分钟前
追寻完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917957
求助须知:如何正确求助?哪些是违规求助? 4190814
关于积分的说明 13015347
捐赠科研通 3960453
什么是DOI,文献DOI怎么找? 2171264
邀请新用户注册赠送积分活动 1189307
关于科研通互助平台的介绍 1097534