Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CT

医学 神经组阅片室 接收机工作特性 假阳性悖论 介入放射学 放射科 核医学 算法 人工智能 计算机科学 神经学 内科学 精神科
作者
Shunjiro Noguchi,Mizuho Nishio,Ryo Sakamoto,Masahiro Yakami,Koji Fujimoto,Yutaka Emoto,Takeshi Kubo,Yoshio Iizuka,Keita Nakagomi,Kazuhiro Miyasa,Kiyohide Satoh,Yuji Nakamoto
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (11): 7976-7987 被引量:28
标识
DOI:10.1007/s00330-022-08741-3
摘要

ObjectivesTo develop and evaluate a deep learning–based algorithm (DLA) for automatic detection of bone metastases on CT.MethodsThis retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance.ResultsA total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004).ConclusionWith the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time.Key Points• A deep learning–based algorithm for automatic detection of bone metastases on CT was developed.• In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm.• Radiologists’ interpretation time decreased at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whyhanano发布了新的文献求助10
2秒前
乔修亚发布了新的文献求助10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Dracoon完成签到,获得积分10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得30
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
卡卡西应助科研通管家采纳,获得20
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
梦Weimar发布了新的文献求助10
4秒前
八十八夜的茶摘完成签到,获得积分10
6秒前
6秒前
CipherSage应助开朗艳一采纳,获得10
6秒前
6秒前
自由的老姆完成签到,获得积分20
7秒前
7秒前
小胖酱发布了新的文献求助10
8秒前
8秒前
ang完成签到,获得积分10
8秒前
Yuan完成签到,获得积分20
9秒前
merci发布了新的文献求助10
9秒前
我是老大应助Grape采纳,获得10
10秒前
10秒前
ssnwlp123完成签到 ,获得积分10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186