Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CT

医学 神经组阅片室 接收机工作特性 假阳性悖论 介入放射学 放射科 核医学 算法 人工智能 计算机科学 神经学 内科学 精神科
作者
Shunjiro Noguchi,Mizuho Nishio,Ryo Sakamoto,Masahiro Yakami,Koji Fujimoto,Yutaka Emoto,Takeshi Kubo,Yoshio Iizuka,Keita Nakagomi,Kazuhiro Miyasa,Kiyohide Satoh,Yuji Nakamoto
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (11): 7976-7987 被引量:28
标识
DOI:10.1007/s00330-022-08741-3
摘要

ObjectivesTo develop and evaluate a deep learning–based algorithm (DLA) for automatic detection of bone metastases on CT.MethodsThis retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance.ResultsA total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004).ConclusionWith the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time.Key Points• A deep learning–based algorithm for automatic detection of bone metastases on CT was developed.• In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm.• Radiologists’ interpretation time decreased at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
急于学习发布了新的文献求助10
刚刚
小梦完成签到,获得积分10
刚刚
科研通AI2S应助祥子的骆驼采纳,获得10
刚刚
caoyuya123完成签到 ,获得积分10
刚刚
东都哈士奇完成签到,获得积分10
1秒前
gigi完成签到 ,获得积分10
1秒前
bmhs2017应助MarcoPolo采纳,获得10
1秒前
2秒前
搜集达人应助微笑的雁菱采纳,获得10
2秒前
清风发布了新的文献求助10
2秒前
curtisness应助zsl采纳,获得10
3秒前
hhgcc完成签到,获得积分10
3秒前
科研通AI6应助Masiying采纳,获得10
3秒前
夏小蘩完成签到,获得积分10
3秒前
4秒前
蔡佩翰发布了新的文献求助10
4秒前
4秒前
安详的沛菡完成签到,获得积分10
4秒前
赤江之木完成签到 ,获得积分10
4秒前
Akim应助tikka采纳,获得10
4秒前
柴ZL完成签到,获得积分10
5秒前
浮游应助秋2采纳,获得10
5秒前
哈哈哈哈哈哈12306完成签到,获得积分10
5秒前
kk99123应助秋2采纳,获得10
5秒前
Kei应助天下迎春采纳,获得10
6秒前
高大晓丝完成签到 ,获得积分10
6秒前
6秒前
赵辉发布了新的文献求助10
6秒前
浮游应助怪怪采纳,获得10
6秒前
无尘完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
sfx完成签到,获得积分10
7秒前
一只东北鸟完成签到 ,获得积分10
7秒前
科研通AI6应助zz采纳,获得30
8秒前
清风完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563