Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CT

医学 神经组阅片室 接收机工作特性 假阳性悖论 介入放射学 放射科 核医学 算法 人工智能 计算机科学 神经学 内科学 精神科
作者
Shunjiro Noguchi,Mizuho Nishio,Ryo Sakamoto,Masahiro Yakami,Koji Fujimoto,Yutaka Emoto,Takeshi Kubo,Yoshio Iizuka,Keita Nakagomi,Kazuhiro Miyasa,Kiyohide Satoh,Yuji Nakamoto
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (11): 7976-7987 被引量:28
标识
DOI:10.1007/s00330-022-08741-3
摘要

ObjectivesTo develop and evaluate a deep learning–based algorithm (DLA) for automatic detection of bone metastases on CT.MethodsThis retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance.ResultsA total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004).ConclusionWith the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time.Key Points• A deep learning–based algorithm for automatic detection of bone metastases on CT was developed.• In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm.• Radiologists’ interpretation time decreased at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuqiansd发布了新的文献求助10
1秒前
脑洞疼应助飘逸小笼包采纳,获得50
1秒前
天真蚂蚁应助asdfqwer采纳,获得10
2秒前
CodeCraft应助hillbert采纳,获得10
8秒前
珊熙完成签到,获得积分10
8秒前
情怀应助生活于微采纳,获得10
8秒前
10秒前
老王家的二姑娘完成签到 ,获得积分10
11秒前
复杂不二完成签到,获得积分10
11秒前
完美世界应助xuqiansd采纳,获得10
11秒前
13秒前
0128lun完成签到,获得积分10
15秒前
shierfang完成签到 ,获得积分0
15秒前
矮小的盼夏完成签到 ,获得积分10
15秒前
15秒前
善学以致用应助小白采纳,获得10
16秒前
17秒前
轨迹完成签到,获得积分10
17秒前
小智发布了新的文献求助20
19秒前
共享精神应助幼忢采纳,获得10
20秒前
20秒前
hillbert发布了新的文献求助10
20秒前
李不过完成签到,获得积分10
23秒前
24秒前
caramel发布了新的文献求助10
26秒前
somin发布了新的文献求助10
26秒前
May完成签到,获得积分10
28秒前
王小妖完成签到 ,获得积分0
28秒前
29秒前
30秒前
fourredli完成签到,获得积分20
30秒前
Jeamren完成签到,获得积分10
31秒前
keplek完成签到 ,获得积分10
32秒前
llay发布了新的文献求助10
32秒前
TTDY完成签到 ,获得积分10
34秒前
35秒前
共享精神应助qqqq采纳,获得10
36秒前
36秒前
自然卷的春天完成签到,获得积分10
36秒前
阿楷完成签到,获得积分10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
the critical response to tennessee williams 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254080
求助须知:如何正确求助?哪些是违规求助? 2896443
关于积分的说明 8292655
捐赠科研通 2565288
什么是DOI,文献DOI怎么找? 1392945
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856