已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning

遥感 登录中 合成孔径雷达 森林砍伐(计算机科学) 斜杠(日志) 环境科学 计算机科学 地理 林业 程序设计语言
作者
Feng Zhao,Rui Sun,Liheng Zhong,Ran Meng,Chengquan Huang,Xiaoxi Zeng,Mengyu Wang,Yaxin Li,Ziyang Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112822-112822 被引量:55
标识
DOI:10.1016/j.rse.2021.112822
摘要

Compared with disturbance maps produced at annual or multi-year time steps, monthly mapping of forest harvesting can provide more temporal details needed for studying the socio-economic drivers (e.g., differentiating salvage logging and slash-and-burn from other timber harvesting) of harvesting and characterizing the associated intra-annual carbon and hydrological dynamics. Frequent cloud cover limits the application of optical remote sensing in timely mapping of forest changes. The freely available Sentinel-1 synthetic aperture radar (SAR) sensor provides an unprecedented opportunity to achieve more frequent mapping of forest harvesting than ever before (i.e., at monthly interval). The unique landscape pattern of forest harvesting from Sentienl-1 data (i.e., how a harvested patch contrasts to surrounding intact forests) holds critical information for harvesting mapping but have not been fully explored. In this study, we propose a deep learning-based (i.e., U-Net) approach using the landscape pattern from Sentinel-1 data to produce monthly maps of forest harvesting in two deforestation hotspots - California, USA and Rondônia, Brazil – for as long as three years. Our results show that (1) our proposed approach is reliable (mean F1 scores (the geometric mean of user's and producer's accuracies) 0.74–0.78; mean IoU (the area of intersection over union between the prediction part and target part) 0.59–0.65) for monthly forest harvesting mapping with Sentinel-1 data, outperforming the traditional object-based approach (0.38–0.43 in IoU). The varying harvesting pattern from Sentinel-1 data can be recognized by the U-Net bottleneck block as whole entities, which is the key advantage of our proposed approach; (2) multi-temporal SAR filtering is helpful for improving the accuracies of our proposed approach (increased F1 and IoU for 0.04 and 0.06, respectively); (3) our proposed model can be trained using samples collected during a particular time period over one location and be fine-tuned using sparse local samples from a new area to achieve optimal performance, and hence can greatly reduce training data collection effort when applied to new study sites; (4) forest harvesting maps produced using our approach revealed substantial variations in monthly harvesting activities: in Rondônia, most of the forest harvest occurred in July/August (the dry season) and about 14% of the dry season harvesting were followed by fires (i.e., slash-and-burn); in California, the rates of forest harvesting were relatively stable, but abnormally high values could occur due to salvage logging after big fires. Our novel approach for mapping forest harvesting at monthly interval represents an important step towards timely monitoring of forest harvesting and assisting stakeholders in developing sustainable strategy of forest management, especially for regions with frequent cloud cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PAD驳回了Lucas应助
2秒前
linkman发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
慕青应助科研进化中采纳,获得10
9秒前
9秒前
张大英关注了科研通微信公众号
10秒前
含蓄问安发布了新的文献求助10
10秒前
10秒前
胡萝卜发布了新的文献求助10
12秒前
pipichang完成签到,获得积分10
12秒前
有点鸭梨呀完成签到 ,获得积分10
13秒前
13秒前
14秒前
nnl完成签到,获得积分20
14秒前
袁咏琳冲冲冲完成签到,获得积分10
14秒前
WilliamJarvis完成签到 ,获得积分10
16秒前
斯文败类应助皮崇知采纳,获得10
16秒前
pzh完成签到 ,获得积分10
19秒前
无情寒荷发布了新的文献求助10
20秒前
打打应助含蓄问安采纳,获得10
22秒前
23秒前
皮崇知发布了新的文献求助10
27秒前
无情寒荷完成签到,获得积分10
28秒前
wangch198201完成签到 ,获得积分10
29秒前
坚定的小蘑菇完成签到 ,获得积分10
31秒前
xutong de完成签到,获得积分10
40秒前
迅速谷云完成签到,获得积分10
42秒前
zzyuyu完成签到 ,获得积分10
43秒前
鸣蜩十三完成签到,获得积分10
46秒前
xiuxiu完成签到 ,获得积分10
50秒前
念白完成签到 ,获得积分10
50秒前
GingerF应助科研通管家采纳,获得50
53秒前
小马甲应助科研通管家采纳,获得10
53秒前
天天快乐应助科研通管家采纳,获得10
53秒前
搜集达人应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
GingerF应助科研通管家采纳,获得10
53秒前
mg完成签到 ,获得积分10
54秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176