Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning

遥感 登录中 合成孔径雷达 森林砍伐(计算机科学) 斜杠(日志) 环境科学 计算机科学 地理 林业 程序设计语言
作者
Feng Zhao,Rui Sun,Liheng Zhong,Ran Meng,Chengquan Huang,Xiaoxi Zeng,Mengyu Wang,Yaxin Li,Ziyang Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112822-112822 被引量:55
标识
DOI:10.1016/j.rse.2021.112822
摘要

Compared with disturbance maps produced at annual or multi-year time steps, monthly mapping of forest harvesting can provide more temporal details needed for studying the socio-economic drivers (e.g., differentiating salvage logging and slash-and-burn from other timber harvesting) of harvesting and characterizing the associated intra-annual carbon and hydrological dynamics. Frequent cloud cover limits the application of optical remote sensing in timely mapping of forest changes. The freely available Sentinel-1 synthetic aperture radar (SAR) sensor provides an unprecedented opportunity to achieve more frequent mapping of forest harvesting than ever before (i.e., at monthly interval). The unique landscape pattern of forest harvesting from Sentienl-1 data (i.e., how a harvested patch contrasts to surrounding intact forests) holds critical information for harvesting mapping but have not been fully explored. In this study, we propose a deep learning-based (i.e., U-Net) approach using the landscape pattern from Sentinel-1 data to produce monthly maps of forest harvesting in two deforestation hotspots - California, USA and Rondônia, Brazil – for as long as three years. Our results show that (1) our proposed approach is reliable (mean F1 scores (the geometric mean of user's and producer's accuracies) 0.74–0.78; mean IoU (the area of intersection over union between the prediction part and target part) 0.59–0.65) for monthly forest harvesting mapping with Sentinel-1 data, outperforming the traditional object-based approach (0.38–0.43 in IoU). The varying harvesting pattern from Sentinel-1 data can be recognized by the U-Net bottleneck block as whole entities, which is the key advantage of our proposed approach; (2) multi-temporal SAR filtering is helpful for improving the accuracies of our proposed approach (increased F1 and IoU for 0.04 and 0.06, respectively); (3) our proposed model can be trained using samples collected during a particular time period over one location and be fine-tuned using sparse local samples from a new area to achieve optimal performance, and hence can greatly reduce training data collection effort when applied to new study sites; (4) forest harvesting maps produced using our approach revealed substantial variations in monthly harvesting activities: in Rondônia, most of the forest harvest occurred in July/August (the dry season) and about 14% of the dry season harvesting were followed by fires (i.e., slash-and-burn); in California, the rates of forest harvesting were relatively stable, but abnormally high values could occur due to salvage logging after big fires. Our novel approach for mapping forest harvesting at monthly interval represents an important step towards timely monitoring of forest harvesting and assisting stakeholders in developing sustainable strategy of forest management, especially for regions with frequent cloud cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宇文山柏发布了新的文献求助10
1秒前
1秒前
1秒前
追寻鸵鸟发布了新的文献求助10
1秒前
kkkl发布了新的文献求助10
2秒前
panpan发布了新的文献求助10
4秒前
aa发布了新的文献求助20
4秒前
zzz完成签到,获得积分10
4秒前
Mintkarla发布了新的文献求助30
5秒前
5秒前
5秒前
怕黑天问发布了新的文献求助10
5秒前
GOING发布了新的文献求助10
6秒前
7秒前
8秒前
刘启迪发布了新的文献求助10
9秒前
小马甲应助昏睡的自行车采纳,获得10
9秒前
牛牛发布了新的文献求助10
10秒前
老孟完成签到,获得积分10
11秒前
明明明发布了新的文献求助30
11秒前
苜蓿化3214完成签到,获得积分10
12秒前
勤劳亦瑶完成签到,获得积分20
13秒前
14秒前
14秒前
16秒前
17秒前
春和景明发布了新的文献求助10
19秒前
19秒前
凌波漫步发布了新的文献求助10
20秒前
勤劳亦瑶发布了新的文献求助10
20秒前
20秒前
小心力学发布了新的文献求助10
20秒前
小泥娃完成签到 ,获得积分10
21秒前
徐若楠发布了新的文献求助10
22秒前
23秒前
25秒前
糊涂的大象完成签到,获得积分10
25秒前
斯文败类应助科研混子采纳,获得10
25秒前
1661完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706