已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning

遥感 登录中 合成孔径雷达 森林砍伐(计算机科学) 斜杠(日志) 环境科学 计算机科学 地理 林业 程序设计语言
作者
Feng Zhao,Rui Sun,Liheng Zhong,Ran Meng,Chengquan Huang,Xiaoxi Zeng,Mengyu Wang,Yaxin Li,Ziyang Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:269: 112822-112822 被引量:82
标识
DOI:10.1016/j.rse.2021.112822
摘要

Compared with disturbance maps produced at annual or multi-year time steps, monthly mapping of forest harvesting can provide more temporal details needed for studying the socio-economic drivers (e.g., differentiating salvage logging and slash-and-burn from other timber harvesting) of harvesting and characterizing the associated intra-annual carbon and hydrological dynamics. Frequent cloud cover limits the application of optical remote sensing in timely mapping of forest changes. The freely available Sentinel-1 synthetic aperture radar (SAR) sensor provides an unprecedented opportunity to achieve more frequent mapping of forest harvesting than ever before (i.e., at monthly interval). The unique landscape pattern of forest harvesting from Sentienl-1 data (i.e., how a harvested patch contrasts to surrounding intact forests) holds critical information for harvesting mapping but have not been fully explored. In this study, we propose a deep learning-based (i.e., U-Net) approach using the landscape pattern from Sentinel-1 data to produce monthly maps of forest harvesting in two deforestation hotspots - California, USA and Rondônia, Brazil – for as long as three years. Our results show that (1) our proposed approach is reliable (mean F1 scores (the geometric mean of user's and producer's accuracies) 0.74–0.78; mean IoU (the area of intersection over union between the prediction part and target part) 0.59–0.65) for monthly forest harvesting mapping with Sentinel-1 data, outperforming the traditional object-based approach (0.38–0.43 in IoU). The varying harvesting pattern from Sentinel-1 data can be recognized by the U-Net bottleneck block as whole entities, which is the key advantage of our proposed approach; (2) multi-temporal SAR filtering is helpful for improving the accuracies of our proposed approach (increased F1 and IoU for 0.04 and 0.06, respectively); (3) our proposed model can be trained using samples collected during a particular time period over one location and be fine-tuned using sparse local samples from a new area to achieve optimal performance, and hence can greatly reduce training data collection effort when applied to new study sites; (4) forest harvesting maps produced using our approach revealed substantial variations in monthly harvesting activities: in Rondônia, most of the forest harvest occurred in July/August (the dry season) and about 14% of the dry season harvesting were followed by fires (i.e., slash-and-burn); in California, the rates of forest harvesting were relatively stable, but abnormally high values could occur due to salvage logging after big fires. Our novel approach for mapping forest harvesting at monthly interval represents an important step towards timely monitoring of forest harvesting and assisting stakeholders in developing sustainable strategy of forest management, especially for regions with frequent cloud cover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北冥有鱼完成签到,获得积分10
刚刚
程住气完成签到 ,获得积分10
刚刚
结实黑猫应助藤井树采纳,获得10
刚刚
迷路完成签到 ,获得积分10
2秒前
月关完成签到 ,获得积分10
3秒前
SciGPT应助无轩采纳,获得10
3秒前
朴素海亦完成签到 ,获得积分10
5秒前
8秒前
9秒前
xinjie完成签到,获得积分10
9秒前
HMYX完成签到 ,获得积分10
10秒前
风月难安发布了新的文献求助10
11秒前
清风明月完成签到 ,获得积分10
12秒前
12秒前
优美紫槐完成签到,获得积分10
13秒前
ComeOn发布了新的文献求助10
15秒前
15秒前
hqh发布了新的文献求助10
16秒前
嘻嘻完成签到 ,获得积分10
17秒前
21秒前
乐乐应助THEFAN采纳,获得10
21秒前
几两完成签到 ,获得积分10
22秒前
倪妮完成签到 ,获得积分10
22秒前
haprier完成签到 ,获得积分10
23秒前
无花果应助琪琪采纳,获得10
24秒前
baqiuzunzhe完成签到,获得积分10
25秒前
111完成签到 ,获得积分10
25秒前
呆萌滑板完成签到 ,获得积分10
26秒前
淡然冬灵完成签到,获得积分10
26秒前
JamesPei应助THEFAN采纳,获得10
26秒前
桐桐应助Yiyin采纳,获得10
26秒前
Chris完成签到 ,获得积分0
27秒前
SciGPT应助微课采纳,获得10
28秒前
斯文的苡完成签到,获得积分10
28秒前
头号玩家完成签到,获得积分10
28秒前
半夏黄良发布了新的文献求助10
29秒前
钟D摆完成签到 ,获得积分10
29秒前
Sherry完成签到 ,获得积分10
29秒前
serendipity完成签到 ,获得积分10
30秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399