偏微分方程
卷积(计算机科学)
数学
非线性系统
核(代数)
应用数学
航程(航空)
Broyden–Fletcher–Goldfarb–Shanno算法
偏导数
操作员(生物学)
人工神经网络
数学优化
算法
计算机科学
数学分析
人工智能
组合数学
物理
基因
转录因子
量子力学
异步通信
抑制因子
计算机网络
复合材料
化学
材料科学
生物化学
作者
Wenshu Zha,Wen Zhang,Daolun Li,Yan Xing,Lei He,Jieqing Tan
摘要
Neural networks are increasingly used widely in the solution of partial differential equations (PDEs). This letter proposes 3D-PDE-Net to solve the three-dimensional PDE. We give a mathematical derivation of a three-dimensional convolution kernel that can approximate any order differential operator within the range of expressing ability and then conduct 3D-PDE-Net based on this theory. An optimum network is obtained by minimizing the normalized mean square error (NMSE) of training data, and L-BFGS is the optimized algorithm of second-order precision. Numerical experimental results show that 3D-PDE-Net can achieve the solution with good accuracy using few training samples, and it is of highly significant in solving linear and nonlinear unsteady PDEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI