Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants

阴天 计算机科学 光伏系统 人工智能 机器学习 期限(时间) 学习迁移 天空 过程(计算) 理论(学习稳定性) 深度学习 功率(物理) 气象学 工程类 量子力学 操作系统 电气工程 物理
作者
Xing Luo,Dongxiao Zhang,Xu Zhu
出处
期刊:Renewable Energy [Elsevier]
卷期号:185: 1062-1077 被引量:31
标识
DOI:10.1016/j.renene.2021.12.104
摘要

Photovoltaic power generation (PVPG) forecasting has attracted increasing research and industry attention due to its significance for energy management, infrastructure planning, and budgeting. Emerging deep learning (DL) models based on historical data have provided effective solutions for PVPG forecasting with great success. However, newly-constructed photovoltaic (NCPV) plants often lack collections of historical data, and thus it is difficult to forecast their future generation accurately. In this work, combining transfer learning (TL) and DL models, we initially propose two parameter-transferring strategies and a constrained long short-term memory (C-LSTM) model, to address the hourly day-ahead PVPG forecasting problem of NCPV plants. The K-nearest neighbors (KNN) algorithm is utilized to extract prior knowledge as physical constraints, which can guide the training process of C-LSTM. The performances of different TL methods combined with C-LSTM are evaluated specifically, and appropriate ones are determined accordingly. The proposed models are evaluated based on real-life datasets collected from actual PV plants in Australia. The results demonstrate that the proposed C-LSTM model outperforms the standard LSTM model with higher forecasting accuracy. In addition, the results also indicate that significant improvements in forecasting accuracy and stability can be obtained by the proposed TL strategies combined with C-LSTM, regardless of different sky conditions (i.e., clear sky, partly cloudy sky, and overcast sky), compared to the conventional machine learning and statistical models in the literature. The forecasting skill of the combined model has improved up to 68.4% compared with the reference persistence model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
accept发布了新的文献求助10
刚刚
慕青应助yidezeng采纳,获得10
1秒前
1秒前
鱼鱼发布了新的文献求助10
2秒前
xiezizai发布了新的文献求助10
3秒前
LIUJIE完成签到,获得积分10
4秒前
小羊完成签到,获得积分10
4秒前
外向蜡烛完成签到 ,获得积分10
4秒前
沈星回关注了科研通微信公众号
4秒前
Daisypharma发布了新的文献求助10
4秒前
共享精神应助佐佐木淳平采纳,获得10
7秒前
田里一把叉完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
8秒前
xiezizai完成签到,获得积分10
9秒前
9秒前
11秒前
张嘟嘟发布了新的文献求助10
11秒前
遭难大魔王完成签到,获得积分20
11秒前
Ava应助Manyiu采纳,获得10
11秒前
CPS发布了新的文献求助10
13秒前
Hello应助鱼鱼采纳,获得10
13秒前
13秒前
匪石发布了新的文献求助30
14秒前
泡面加蛋完成签到,获得积分10
15秒前
慕青应助小瓦片采纳,获得10
15秒前
15秒前
醉书生完成签到,获得积分10
16秒前
16秒前
yidezeng完成签到,获得积分10
17秒前
Chloe完成签到,获得积分10
18秒前
魏晓林完成签到,获得积分10
19秒前
19秒前
情怀应助mitty采纳,获得20
19秒前
酷波er应助巨人的背影采纳,获得30
21秒前
Emily完成签到 ,获得积分10
21秒前
海风发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038