Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants

阴天 计算机科学 光伏系统 人工智能 机器学习 期限(时间) 学习迁移 天空 过程(计算) 理论(学习稳定性) 深度学习 功率(物理) 气象学 工程类 量子力学 操作系统 电气工程 物理
作者
Xing Luo,Dongxiao Zhang,Xu Zhu
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:185: 1062-1077 被引量:31
标识
DOI:10.1016/j.renene.2021.12.104
摘要

Photovoltaic power generation (PVPG) forecasting has attracted increasing research and industry attention due to its significance for energy management, infrastructure planning, and budgeting. Emerging deep learning (DL) models based on historical data have provided effective solutions for PVPG forecasting with great success. However, newly-constructed photovoltaic (NCPV) plants often lack collections of historical data, and thus it is difficult to forecast their future generation accurately. In this work, combining transfer learning (TL) and DL models, we initially propose two parameter-transferring strategies and a constrained long short-term memory (C-LSTM) model, to address the hourly day-ahead PVPG forecasting problem of NCPV plants. The K-nearest neighbors (KNN) algorithm is utilized to extract prior knowledge as physical constraints, which can guide the training process of C-LSTM. The performances of different TL methods combined with C-LSTM are evaluated specifically, and appropriate ones are determined accordingly. The proposed models are evaluated based on real-life datasets collected from actual PV plants in Australia. The results demonstrate that the proposed C-LSTM model outperforms the standard LSTM model with higher forecasting accuracy. In addition, the results also indicate that significant improvements in forecasting accuracy and stability can be obtained by the proposed TL strategies combined with C-LSTM, regardless of different sky conditions (i.e., clear sky, partly cloudy sky, and overcast sky), compared to the conventional machine learning and statistical models in the literature. The forecasting skill of the combined model has improved up to 68.4% compared with the reference persistence model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Regina_thu完成签到,获得积分10
刚刚
1秒前
丘比特应助王宇杰采纳,获得10
1秒前
1秒前
CipherSage应助冷酷严青采纳,获得10
1秒前
Godspeed完成签到,获得积分10
1秒前
篮球完成签到,获得积分10
2秒前
2秒前
2秒前
孟浩然完成签到 ,获得积分10
2秒前
明帅完成签到,获得积分10
2秒前
rum完成签到 ,获得积分10
3秒前
谦让的博完成签到,获得积分10
3秒前
4秒前
呼呼发布了新的文献求助10
4秒前
饱满的鑫完成签到,获得积分10
4秒前
直球科研完成签到 ,获得积分10
5秒前
6秒前
杨杰超完成签到,获得积分10
6秒前
6秒前
6秒前
许方恺发布了新的文献求助10
7秒前
Jimmy完成签到,获得积分10
7秒前
7秒前
7秒前
yaochuan发布了新的文献求助10
8秒前
sdniuidifod发布了新的文献求助50
8秒前
Jimmy发布了新的文献求助10
9秒前
lvlv完成签到,获得积分10
9秒前
小叶完成签到,获得积分10
9秒前
如你所liao完成签到,获得积分10
9秒前
10秒前
doctor fighting完成签到,获得积分10
10秒前
wdy111应助飞0802采纳,获得20
10秒前
10秒前
11秒前
英俊的铭应助ccccccp采纳,获得10
11秒前
11秒前
年年完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600