Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants

阴天 计算机科学 光伏系统 人工智能 机器学习 期限(时间) 学习迁移 天空 过程(计算) 理论(学习稳定性) 深度学习 功率(物理) 气象学 工程类 量子力学 操作系统 电气工程 物理
作者
Xing Luo,Dongxiao Zhang,Xu Zhu
出处
期刊:Renewable Energy [Elsevier]
卷期号:185: 1062-1077 被引量:66
标识
DOI:10.1016/j.renene.2021.12.104
摘要

Photovoltaic power generation (PVPG) forecasting has attracted increasing research and industry attention due to its significance for energy management, infrastructure planning, and budgeting. Emerging deep learning (DL) models based on historical data have provided effective solutions for PVPG forecasting with great success. However, newly-constructed photovoltaic (NCPV) plants often lack collections of historical data, and thus it is difficult to forecast their future generation accurately. In this work, combining transfer learning (TL) and DL models, we initially propose two parameter-transferring strategies and a constrained long short-term memory (C-LSTM) model, to address the hourly day-ahead PVPG forecasting problem of NCPV plants. The K-nearest neighbors (KNN) algorithm is utilized to extract prior knowledge as physical constraints, which can guide the training process of C-LSTM. The performances of different TL methods combined with C-LSTM are evaluated specifically, and appropriate ones are determined accordingly. The proposed models are evaluated based on real-life datasets collected from actual PV plants in Australia. The results demonstrate that the proposed C-LSTM model outperforms the standard LSTM model with higher forecasting accuracy. In addition, the results also indicate that significant improvements in forecasting accuracy and stability can be obtained by the proposed TL strategies combined with C-LSTM, regardless of different sky conditions (i.e., clear sky, partly cloudy sky, and overcast sky), compared to the conventional machine learning and statistical models in the literature. The forecasting skill of the combined model has improved up to 68.4% compared with the reference persistence model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1234发布了新的文献求助10
1秒前
Mortal完成签到 ,获得积分10
2秒前
是阿刁完成签到,获得积分10
2秒前
2秒前
紫烨完成签到,获得积分10
2秒前
blue完成签到,获得积分10
2秒前
lele发布了新的文献求助10
3秒前
文艺的鬼神完成签到,获得积分20
3秒前
amape发布了新的文献求助10
3秒前
鳗鱼饭饭发布了新的文献求助10
3秒前
3秒前
z7发布了新的文献求助10
3秒前
有趣的桃应助weing采纳,获得10
4秒前
希望天下0贩的0应助十一采纳,获得10
4秒前
orixero应助Kra采纳,获得10
4秒前
LJHUA完成签到,获得积分10
5秒前
5秒前
zhutae完成签到,获得积分10
5秒前
Mortal关注了科研通微信公众号
5秒前
张坤发布了新的文献求助10
6秒前
Hello应助Ashley采纳,获得10
6秒前
ily.发布了新的文献求助10
6秒前
利多卡因发布了新的文献求助10
6秒前
zhuyt完成签到,获得积分10
6秒前
坚强丹雪完成签到,获得积分10
7秒前
zhq发布了新的文献求助10
7秒前
7秒前
aiwen完成签到,获得积分20
7秒前
Meng发布了新的文献求助10
7秒前
刚睡醒发布了新的文献求助10
7秒前
7秒前
weing完成签到,获得积分10
8秒前
9秒前
Owen应助敲西瓜采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921