Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
sci大户完成签到,获得积分10
2秒前
歪歪打豆豆完成签到,获得积分10
2秒前
芊芊完成签到 ,获得积分10
2秒前
bkagyin应助XIEQ采纳,获得10
6秒前
ding应助范良聪采纳,获得10
7秒前
宓广缘发布了新的文献求助10
8秒前
华仔应助无情的尔风采纳,获得30
8秒前
小二郎应助无情的尔风采纳,获得10
8秒前
10秒前
华仔应助sci大户采纳,获得10
10秒前
斯文败类应助ccc采纳,获得10
11秒前
Van完成签到,获得积分10
13秒前
古或今完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
niceLDD应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
14秒前
搜集达人应助科研通管家采纳,获得30
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
ccc发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
Akim应助真不叫阿呆采纳,获得10
23秒前
Alice完成签到,获得积分20
24秒前
tier3完成签到,获得积分10
25秒前
南风发布了新的文献求助10
26秒前
度ewf发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432