亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
打打应助dogontree采纳,获得10
7秒前
8秒前
重要从灵发布了新的文献求助10
12秒前
HiDasiy完成签到 ,获得积分10
14秒前
Hello应助司空三毒采纳,获得10
17秒前
20秒前
26秒前
dogontree发布了新的文献求助10
27秒前
司空三毒发布了新的文献求助10
30秒前
Ocean发布了新的文献求助10
35秒前
爱慕秋森万完成签到,获得积分10
37秒前
XueXiTong完成签到,获得积分10
41秒前
45秒前
asdf完成签到,获得积分10
55秒前
Y3611应助琳燕采纳,获得20
55秒前
feifei发布了新的文献求助10
1分钟前
99253761发布了新的文献求助10
1分钟前
科研通AI5应助feifei采纳,获得10
1分钟前
99253761完成签到,获得积分20
1分钟前
哈哈哈哈完成签到 ,获得积分10
2分钟前
Ocean完成签到,获得积分10
2分钟前
飞快的孱发布了新的文献求助10
2分钟前
123完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
Leedesweet完成签到 ,获得积分10
2分钟前
JamesPei应助dogontree采纳,获得10
3分钟前
qwerty发布了新的文献求助10
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
Piyush321应助科研通管家采纳,获得10
3分钟前
多久上课发布了新的文献求助10
3分钟前
3分钟前
dogontree发布了新的文献求助10
3分钟前
无限的水壶完成签到 ,获得积分10
3分钟前
烟花应助多久上课采纳,获得10
3分钟前
远陌完成签到,获得积分10
4分钟前
4分钟前
cwy发布了新的文献求助10
4分钟前
小马甲应助张阿飞采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625918
求助须知:如何正确求助?哪些是违规求助? 4024983
关于积分的说明 12458183
捐赠科研通 3710136
什么是DOI,文献DOI怎么找? 2046461
邀请新用户注册赠送积分活动 1078400
科研通“疑难数据库(出版商)”最低求助积分说明 960853