Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助眠羊采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
小劳完成签到,获得积分10
5秒前
福娃完成签到,获得积分10
7秒前
olivia完成签到 ,获得积分10
9秒前
一万朵蝴蝶完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
orixero应助冷艳惜梦采纳,获得10
11秒前
爆米花应助yan采纳,获得10
12秒前
田様应助贤弟采纳,获得10
12秒前
13秒前
jiayouya发布了新的文献求助10
14秒前
眠羊发布了新的文献求助10
15秒前
怕孤单的忆灵关注了科研通微信公众号
15秒前
尹天扬完成签到,获得积分10
15秒前
C22完成签到,获得积分10
16秒前
FashionBoy应助zfihead采纳,获得10
16秒前
16秒前
JG完成签到,获得积分10
16秒前
19秒前
20秒前
王凯完成签到,获得积分10
21秒前
21秒前
huqing发布了新的文献求助60
22秒前
22秒前
ddboys1009发布了新的文献求助10
22秒前
23秒前
C22发布了新的文献求助10
24秒前
王凯发布了新的文献求助10
25秒前
冷艳惜梦发布了新的文献求助10
25秒前
cinnamonbrd发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
27秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851