已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黑泡泡发布了新的文献求助10
1秒前
Tangyuan完成签到,获得积分10
1秒前
李蝶儿完成签到 ,获得积分10
2秒前
Wdw2236完成签到,获得积分20
2秒前
sqHALO完成签到,获得积分10
3秒前
zhanzhanzhan完成签到,获得积分10
4秒前
香蕉觅云应助Tangyuan采纳,获得10
6秒前
Swu完成签到,获得积分10
7秒前
7秒前
所所应助zuzu采纳,获得10
11秒前
11秒前
12秒前
无情的冰香完成签到 ,获得积分10
14秒前
朱一龙完成签到,获得积分10
14秒前
19秒前
Criminology34举报ddrose求助涉嫌违规
19秒前
阿朱完成签到 ,获得积分10
20秒前
汉堡包应助孔夫子采纳,获得10
21秒前
天天快乐应助庾稀采纳,获得10
21秒前
chengxiping发布了新的文献求助10
21秒前
21秒前
yangyangyang完成签到,获得积分10
22秒前
23秒前
JohanXu完成签到,获得积分10
24秒前
深情安青应助wd采纳,获得10
25秒前
27秒前
yyy发布了新的文献求助10
27秒前
28秒前
rainbow完成签到,获得积分10
28秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040