亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助贝贝Rach采纳,获得10
6秒前
甜甜纸飞机完成签到 ,获得积分10
10秒前
甜甜的紫菜完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
38秒前
wanci应助科研通管家采纳,获得10
57秒前
LeoBigman完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小雨发布了新的文献求助10
1分钟前
djnjv完成签到 ,获得积分10
1分钟前
Akim应助饱满绫采纳,获得10
2分钟前
2分钟前
饱满绫发布了新的文献求助10
2分钟前
balko发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Frank发布了新的文献求助10
3分钟前
快乐谷蓝完成签到,获得积分10
3分钟前
饱满绫完成签到,获得积分20
3分钟前
南寅完成签到,获得积分10
4分钟前
土豆你个西红柿完成签到 ,获得积分10
4分钟前
陶醉的蜜蜂完成签到,获得积分10
4分钟前
jayliu完成签到,获得积分10
4分钟前
4分钟前
桥洞居士发布了新的文献求助10
4分钟前
天天快乐应助科研通管家采纳,获得10
4分钟前
Frank发布了新的文献求助10
5分钟前
苏梗完成签到 ,获得积分10
5分钟前
专一的忆寒完成签到,获得积分10
5分钟前
浮游应助含蓄草丛采纳,获得10
5分钟前
5分钟前
桥洞居士完成签到,获得积分10
5分钟前
5分钟前
5分钟前
曦耀发布了新的文献求助10
6分钟前
韩小土豆完成签到 ,获得积分10
6分钟前
伯劳完成签到,获得积分10
6分钟前
勇敢的蝙蝠侠完成签到 ,获得积分10
6分钟前
天天快乐应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634956
求助须知:如何正确求助?哪些是违规求助? 4734376
关于积分的说明 14989532
捐赠科研通 4792698
什么是DOI,文献DOI怎么找? 2559792
邀请新用户注册赠送积分活动 1520087
关于科研通互助平台的介绍 1480167