清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 地质学 数学分析 地震学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
奶奶的龙应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
14秒前
xiang完成签到,获得积分20
43秒前
58秒前
2分钟前
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大雁完成签到 ,获得积分0
3分钟前
老老熊完成签到,获得积分10
3分钟前
Una完成签到,获得积分10
3分钟前
合作完成签到 ,获得积分10
3分钟前
欣欣完成签到,获得积分10
3分钟前
一天完成签到 ,获得积分10
3分钟前
甜甜的静柏完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
奶奶的龙应助科研通管家采纳,获得30
4分钟前
sujingbo完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
你好完成签到 ,获得积分10
5分钟前
5分钟前
结实的寒梦完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
尚青华完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016