Moment matching-based intraclass multisource domain adaptation network for bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 匹配(统计) 概化理论 学习迁移 数据挖掘 机器学习 领域(数学分析) 断层(地质) 数学 统计 数学分析 地震学 地质学
作者
Yu Xia,Changqing Shen,Dong Wang,Yongjun Shen,Weiguo Huang,Zhongkui Zhu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108697-108697 被引量:80
标识
DOI:10.1016/j.ymssp.2021.108697
摘要

• A new multisource domain adaptation diagnosis method is proposed. • A moment distance metric is designed for multisource domain adaptation. • Conditional distribution distance is narrowed by an intraclass alignment training strategy. • The robustness is validated by case studies under different working conditions. Deep learning based fault diagnosis methods assume that training and testing data with sufficient labels are available and share a same distribution. In practical scenarios, this assumption does not generally hold due to variable working conditions of rotating machineries and the difficulty in labeling vibration data under all working conditions. Transfer learning (TL) overcomes this problem by utilizing knowledge learned from the source domain to help accomplish tasks on the target domain. Although TL based fault diagnosis has been considerably studied, most studies mainly focus on single-source TL. Since multisource domains with labeled samples from which more useful knowledge can be extracted are available, in this paper, a novel multisource TL model, called the moment matching-based intraclass multisource domain adaptation network, is proposed. This model uses a feature learner to generate features of each source and target domain data to enable the joint weight classifier to predict target labels. It also introduces a moment matching-based distance metric to reduce the distance among all source domains and the target domain. During the training of the model, an intraclass alignment training strategy is applied to match the marginal and conditional distributions of each domain simultaneously. Experiments on two datasets are performed, wherein the proposed method is used to identify bearing fault types under four load conditions. Experiment results, such as high diagnostic accuracies support the reliability and generalizability of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lq完成签到 ,获得积分10
1秒前
虞头星星发布了新的文献求助10
1秒前
1秒前
bkagyin应助赵伟豪采纳,获得10
2秒前
大Lee发布了新的文献求助10
2秒前
昭昭发布了新的文献求助10
3秒前
3秒前
燕天与完成签到,获得积分10
3秒前
完美世界应助顺带急采纳,获得10
3秒前
你好这位仁兄完成签到,获得积分10
4秒前
5秒前
5秒前
妘婴完成签到,获得积分10
6秒前
han发布了新的文献求助10
6秒前
小蘑菇应助Mansis采纳,获得10
7秒前
7秒前
8秒前
兰亭序发布了新的文献求助10
9秒前
刻苦惜萍发布了新的文献求助10
10秒前
10秒前
可爱的函函应助折折采纳,获得30
10秒前
烟花应助苏卡不列颠采纳,获得10
11秒前
11秒前
12秒前
脑洞疼应助诸葛朝雪采纳,获得10
12秒前
炙热的雪糕完成签到,获得积分10
12秒前
12秒前
雪白亦旋发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
yaya发布了新的文献求助10
15秒前
Ava应助Doctor.TANG采纳,获得10
15秒前
小杭76应助大Lee采纳,获得10
16秒前
完美世界应助TIANEO采纳,获得10
16秒前
16秒前
传奇3应助刻苦惜萍采纳,获得10
16秒前
赵伟豪发布了新的文献求助10
17秒前
DiJia发布了新的文献求助10
18秒前
guyuangyy发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572