Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries

材料科学 介电谱 循环伏安法 阴极 扩散 碳化 电化学 分析化学(期刊) 化学工程 相(物质) 电极 物理化学 扫描电子显微镜 复合材料 热力学 化学 有机化学 冶金 工程类 物理
作者
Jiemin Dong,Jingchao Xiao,Yifan Yu,Junru Wang,Fei Chen,Shuo Wang,Li-ming Zhang,Naiqing Ren,Bicai Pan,Chunhua Chen
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:45: 851-860 被引量:34
标识
DOI:10.1016/j.ensm.2021.12.034
摘要

The layered iron-based fluorophosphate Na2FePO4F is a potential candidate cathode material with 2D transport channels for sodium ions. However, its cycling stability and rate capability are unsatisfying due to the inferior intrinsic electronic conductivity of Na2FePO4F. Herein, a small amount of vanadium is used to substitute Fe to form a carbon-coated composition, i.e. Na2Fe0.95V0.05PO4[email protected] (NFVPF). The carbon coating has more sp2 component formed via an in-situ catalytic carbonization of polyvinyl alcohol. Meanwhile, the intrinsic electronic conductivities of NFVPF and particularly its de-sodiated phases are enhanced owing to the substantially reduced band gaps according to the first principle calculations. In addition, a systematic study of electrode kinetics through cyclic voltammetry and electrochemical impedance spectroscopy reveals increased sodium ion diffusion coefficient and reduced charge transfer impedance. Benefiting from synergetic contributions of facilitated Na+ diffusion dynamics and improved electronic conductivities of the surface and bulk phases, the NFVPF electrode yields a high initial discharge capacity of 110.1 mAh g−1 at 0.1C, high-rate reversible capacity of 78.3 mAh g−1 at 10C, and long-term capacity retention of 83.8% after 600 cycles. Even at 50 °C, it still delivers a capacity retention of 87.6% after 150 cycles at 10C. Furthermore, the Na-storage mechanism of NFPF and NFVPF is determined through in-situ X-ray diffraction as two sequential two-phase reactions with Na1.5Fe1-xVxPO4F as the intermediate phase. Such a novel strategy of bulk-to-surface electronic structure regulation may provide new vision for other cathode materials suffering from poor electronic conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿曼尼完成签到 ,获得积分10
1秒前
英俊的铭应助LILING采纳,获得10
1秒前
iRan完成签到,获得积分10
2秒前
落忆完成签到 ,获得积分10
2秒前
蜡笔完成签到,获得积分10
2秒前
趁微风不躁完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
3秒前
张磊完成签到,获得积分10
3秒前
冷艳的太君完成签到,获得积分10
4秒前
4秒前
科目三应助wwwww采纳,获得10
5秒前
5秒前
5秒前
6秒前
CH完成签到 ,获得积分10
6秒前
xiuxiu_27发布了新的文献求助10
7秒前
April发布了新的文献求助10
7秒前
打打应助核桃采纳,获得10
7秒前
7秒前
elena发布了新的文献求助10
7秒前
现代的战斗机完成签到,获得积分10
7秒前
刘星星发布了新的文献求助10
8秒前
萧秋灵完成签到,获得积分10
8秒前
8秒前
9秒前
YaoX完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
YE发布了新的文献求助10
10秒前
10秒前
11秒前
张肥肥完成签到 ,获得积分20
11秒前
明亮的斩关注了科研通微信公众号
11秒前
科研通AI5应助搞怪的人龙采纳,获得10
11秒前
12秒前
xiuxiu_27完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740