Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 梯度升压 仰角(弹道) 人工智能 网格 算法 气象学 环境科学 地质学 工程类 地理 电信 随机森林 生物 湿地 结构工程 生态学 大地测量学
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:605: 127367-127367 被引量:14
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文墨镜完成签到,获得积分10
刚刚
不配.应助寒冷的断秋采纳,获得10
1秒前
3秒前
可爱无招发布了新的文献求助10
4秒前
Orange应助无辜问枫采纳,获得10
4秒前
学术垃圾制造者完成签到,获得积分10
4秒前
chengya完成签到,获得积分10
4秒前
uuu完成签到,获得积分10
4秒前
别说话完成签到,获得积分10
5秒前
5秒前
8秒前
8秒前
xiangxinzx完成签到,获得积分10
9秒前
科目三应助削菠萝采纳,获得10
10秒前
10秒前
该房地产个人的完成签到,获得积分10
12秒前
钦川完成签到,获得积分10
12秒前
无情向梦发布了新的文献求助10
12秒前
可爱无招完成签到,获得积分10
13秒前
15秒前
alooof发布了新的文献求助30
15秒前
17秒前
伶俐的珊完成签到,获得积分10
17秒前
18秒前
完美世界应助97采纳,获得10
21秒前
21秒前
21秒前
21秒前
123发布了新的文献求助10
23秒前
24秒前
24秒前
软甜纱雾完成签到,获得积分10
24秒前
24秒前
24秒前
啦啦啦发布了新的文献求助30
25秒前
隐形之玉发布了新的文献求助30
26秒前
蓝血之人发布了新的文献求助10
28秒前
29秒前
无情向梦完成签到,获得积分10
29秒前
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046