Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 梯度升压 仰角(弹道) 人工智能 网格 算法 气象学 环境科学 地质学 工程类 地理 电信 随机森林 生物 湿地 结构工程 生态学 大地测量学
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:605: 127367-127367 被引量:14
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗苗发布了新的文献求助10
刚刚
金佛山的房间完成签到 ,获得积分10
刚刚
魚子应助33采纳,获得60
1秒前
zixian完成签到,获得积分10
2秒前
畅快的觅风完成签到,获得积分10
4秒前
严十三完成签到 ,获得积分10
4秒前
论文顺利发布了新的文献求助10
7秒前
科研通AI2S应助士载采纳,获得10
8秒前
雨天发布了新的文献求助10
9秒前
风中灵完成签到 ,获得积分10
9秒前
ew完成签到,获得积分10
10秒前
搜嘎完成签到,获得积分10
12秒前
严十三发布了新的文献求助30
15秒前
认真生活完成签到,获得积分10
15秒前
111完成签到,获得积分10
15秒前
16秒前
怕黑的静蕾应助健忘症采纳,获得10
16秒前
16秒前
斯文败类应助跳跃的洪纲采纳,获得10
18秒前
追寻冰淇淋举报王小嘻求助涉嫌违规
20秒前
21秒前
开心每一天完成签到 ,获得积分10
22秒前
学习是头等大事完成签到,获得积分10
22秒前
LSD完成签到,获得积分10
23秒前
23秒前
怕黑的静蕾应助BLAZe采纳,获得10
23秒前
23秒前
佳佳应助微风采纳,获得10
25秒前
27秒前
马不停蹄完成签到,获得积分10
27秒前
不晚发布了新的文献求助10
27秒前
聆听完成签到,获得积分10
27秒前
学习要认真喽完成签到,获得积分10
27秒前
鸣笛发布了新的文献求助10
28秒前
29秒前
30秒前
丘比特应助oop采纳,获得30
31秒前
31秒前
大模型应助外婆的新世界采纳,获得10
31秒前
超越radiology完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421