Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 梯度升压 仰角(弹道) 人工智能 网格 算法 气象学 环境科学 地质学 工程类 地理 电信 随机森林 生物 湿地 结构工程 生态学 大地测量学
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:605: 127367-127367 被引量:14
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocobear完成签到 ,获得积分10
3秒前
mochalv123完成签到 ,获得积分10
4秒前
科研通AI5应助genova采纳,获得10
5秒前
追寻完成签到 ,获得积分10
7秒前
shann完成签到,获得积分10
9秒前
jiaying完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
even完成签到 ,获得积分0
16秒前
闪闪翼发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
bookgg完成签到 ,获得积分10
22秒前
海鑫王完成签到,获得积分20
23秒前
之后再说咯完成签到 ,获得积分10
24秒前
24秒前
少女徐必成完成签到 ,获得积分10
29秒前
手握灵珠常奋笔完成签到,获得积分10
30秒前
细心盼晴发布了新的文献求助10
31秒前
肖果完成签到 ,获得积分10
33秒前
sora完成签到,获得积分10
36秒前
闪闪翼完成签到,获得积分10
39秒前
40秒前
阿达完成签到 ,获得积分10
42秒前
苗条世德完成签到,获得积分10
43秒前
我睡觉的时候不困完成签到 ,获得积分10
44秒前
45秒前
genova发布了新的文献求助10
46秒前
58秒前
qyzhu完成签到,获得积分10
1分钟前
ty完成签到 ,获得积分10
1分钟前
你的样子发布了新的文献求助10
1分钟前
大个应助林厌寻采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fjmelite完成签到 ,获得积分10
1分钟前
1分钟前
kkk完成签到 ,获得积分10
1分钟前
Aixia发布了新的文献求助30
1分钟前
苹果柜子完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910675
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999471
捐赠科研通 3953927
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845