亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 降水 仰角(弹道) 人工智能 网格 算法 预警系统 时间序列 气象学 环境科学 风险评估 水文学(农业) 持续时间(音乐) 差异(会计) 灵敏度(控制系统) 极端天气 水资源管理
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:605: 127367-127367 被引量:46
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whj完成签到 ,获得积分10
2秒前
7秒前
可怜的课题组补助完成签到,获得积分20
8秒前
11秒前
浮游应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
24秒前
Benhnhk21完成签到,获得积分10
24秒前
33秒前
39秒前
43秒前
1分钟前
1分钟前
1分钟前
1分钟前
Ye完成签到,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
2分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
在水一方应助鱿鱼起司采纳,获得10
3分钟前
充电宝应助yyh采纳,获得10
3分钟前
3分钟前
3分钟前
培培完成签到 ,获得积分10
3分钟前
yyh发布了新的文献求助10
3分钟前
聪明的黑猫完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
早日发文章完成签到,获得积分10
4分钟前
4分钟前
顏泰楊完成签到,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553