Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 降水 仰角(弹道) 人工智能 网格 算法 预警系统 时间序列 气象学 环境科学 风险评估 水文学(农业) 持续时间(音乐) 差异(会计) 灵敏度(控制系统) 极端天气 水资源管理
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:605: 127367-127367 被引量:46
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助第一感觉采纳,获得10
刚刚
不安的白昼完成签到 ,获得积分10
刚刚
吉不二完成签到,获得积分10
1秒前
1秒前
小二郎应助安年采纳,获得10
1秒前
科研通AI6应助小灰灰采纳,获得10
1秒前
2秒前
ertredffg发布了新的文献求助10
2秒前
壮观从云完成签到,获得积分10
2秒前
linn发布了新的文献求助10
2秒前
qiuxin完成签到,获得积分10
2秒前
2秒前
怎么睡不醒完成签到,获得积分10
2秒前
3秒前
3秒前
猪头发布了新的文献求助10
3秒前
3秒前
1111完成签到,获得积分10
3秒前
动力小滋完成签到,获得积分10
4秒前
陌路发布了新的文献求助10
4秒前
CodeCraft应助安寒采纳,获得10
5秒前
热可可728完成签到,获得积分10
5秒前
ppp完成签到,获得积分10
6秒前
iffy发布了新的文献求助10
6秒前
董烁烨发布了新的文献求助10
7秒前
7秒前
董11发布了新的文献求助10
7秒前
JJ发布了新的文献求助10
7秒前
X519664508完成签到,获得积分0
8秒前
ld完成签到,获得积分10
8秒前
9秒前
浮浮世世发布了新的文献求助50
9秒前
冰峰完成签到,获得积分10
9秒前
小明应助mofan采纳,获得30
9秒前
iiing完成签到,获得积分10
9秒前
走着完成签到,获得积分10
10秒前
爱笑的蘑菇完成签到,获得积分10
10秒前
莫里完成签到,获得积分10
10秒前
Feiruxu完成签到,获得积分10
10秒前
赘婿应助小徐采纳,获得10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293