Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 降水 仰角(弹道) 人工智能 网格 算法 预警系统 时间序列 气象学 环境科学 风险评估 水文学(农业) 持续时间(音乐) 差异(会计) 灵敏度(控制系统) 极端天气 水资源管理
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:605: 127367-127367 被引量:46
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助aimad采纳,获得10
1秒前
1秒前
galioo3000发布了新的文献求助10
2秒前
百甲完成签到,获得积分10
2秒前
cathylll完成签到,获得积分10
2秒前
小小发布了新的文献求助10
2秒前
3秒前
清秀语梦完成签到,获得积分10
3秒前
zyp1229完成签到,获得积分10
3秒前
Liu发布了新的文献求助10
4秒前
4秒前
4秒前
无花果应助struggling2026采纳,获得10
5秒前
5秒前
耕牛热发布了新的文献求助10
5秒前
5秒前
背后白梦发布了新的文献求助80
5秒前
鱼刺鱼刺卡完成签到,获得积分10
5秒前
星星完成签到,获得积分10
5秒前
chenshi0515完成签到 ,获得积分10
6秒前
6秒前
田攀发布了新的文献求助10
7秒前
7秒前
coolman冰人完成签到,获得积分20
7秒前
7秒前
华仔应助徐志豪采纳,获得10
8秒前
什么也难不倒我完成签到 ,获得积分10
8秒前
千里发布了新的文献求助10
8秒前
俊、、完成签到,获得积分10
9秒前
10秒前
10秒前
清秀语梦发布了新的文献求助10
10秒前
传奇3应助冲冲冲采纳,获得10
11秒前
12秒前
iNk应助QQiang6采纳,获得10
12秒前
耍酷皮皮虾完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
yzizz发布了新的文献求助10
13秒前
Hello应助yulj采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285