Construction of rapid early warning and comprehensive analysis models for urban waterlogging based on AutoML and comparison of the other three machine learning algorithms

临近预报 内涝(考古学) 预警系统 机器学习 计算机科学 降水 仰角(弹道) 人工智能 网格 算法 预警系统 时间序列 气象学 环境科学 风险评估 水文学(农业) 持续时间(音乐) 差异(会计) 灵敏度(控制系统) 极端天气 水资源管理
作者
Yu-Chen Guo,Lihong Quan,Lili Song,Hao Liang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:605: 127367-127367 被引量:46
标识
DOI:10.1016/j.jhydrol.2021.127367
摘要

Urban waterlogging often causes urban disasters, and the rapid early warning and comprehensive analysis of the urban waterlogging can help disaster defenses. However, the warning of waterlogging through the monitoring data cannot give grid distribution and the forecast of hydrological models cannot ensure rapid early warning. To obtain a grid rapid early warning result for a region, like an urban area, a method needs to be proposed which can meet the above problems. In this research, AutoML (automatic machine learning based on genetic algorithm) was recommended to construct the rapid early warning and comprehensive analysis models for urban waterlogging by compared with the other three machine learning algorithms, CatBoost (Categorical Boosting), XGBoost (eXtreme Gradient Boosting), and BPDNN (Back Propagation Deep Learning Neural Network). In the models, the forecast and historical precipitation obtained from the Integrated Nowcasting through Comprehensive analysis system (INCA), the difference of elevation, and the urban waterlogging risk maps provided by Tianjin Meteorological Administration were employed as the input sources. The input precipitation duration was determined as 12 h based on the sensitivity analysis of the influence of various precipitation duration on waterlogging depths. Due to the non-digital (discrete dataset) features, the urban waterlogging risk maps were transformed to the weight of each corresponding risk level according to the area of each risk level and the number of samples falling in each risk level. The difference of elevation was characterized by the average elevations of various distances from the points of concern. The output waterlogging depths were compared with the waterlogging depths monitored in Tianjin, China, whose quality was controlled by eliminating the records of the waterlogging depths lasting for a long time after the end of rainfall. The comparison of the models constructed by different methods demonstrated that the AutoML performed better (NSE and R2 > 0.92, CC > 0.95, RMSE1.1–1.9 cm) than the other three models. The forecast waterlogging depths by AutoML was also coherent with the monitoring waterlogging depths (NSE and R2 ≥ 0.9, CC ≥ 0.95, RMSE 1.7–2.2 cm). For that local topography and waterlogging risk are considered, the AutoML models can be used in the area without the monitoring of water level, quickly predict waterlogging depths and give spatial grid results for rapidly early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助mmmy采纳,获得10
1秒前
今后应助mmmy采纳,获得10
1秒前
顺心夜南应助Yuru采纳,获得100
1秒前
1秒前
1秒前
2秒前
Aipoi发布了新的文献求助10
3秒前
3秒前
3秒前
冯俞淇发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
852应助被风吹过的路采纳,获得10
6秒前
6秒前
吱吱发布了新的文献求助10
7秒前
贪玩半雪发布了新的文献求助10
7秒前
7秒前
7秒前
科研dog发布了新的文献求助10
8秒前
lizhen发布了新的文献求助10
8秒前
chen完成签到,获得积分10
9秒前
aka2012发布了新的文献求助10
9秒前
enen发布了新的文献求助10
9秒前
坦率尔蝶完成签到 ,获得积分10
9秒前
huodian4发布了新的文献求助10
9秒前
dili827发布了新的文献求助10
9秒前
hudaojiadecaigou完成签到,获得积分10
10秒前
脑洞疼应助Joseph0209采纳,获得10
10秒前
11秒前
12秒前
12秒前
隐形曼青应助南北采纳,获得30
12秒前
英姑应助冯俞淇采纳,获得10
12秒前
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671