Using Directed Acyclic Graphs for Investigating Causal Paths for Cardiovascular Disease

有向无环图 计算机科学 疾病 医学 算法 内科学
作者
Simon Thornley
出处
期刊:Journal of biometrics & biostatistics [OMICS Publishing Group]
卷期号:04 (05) 被引量:14
标识
DOI:10.4172/2155-6180.1000182
摘要

By testing for conditional dependence, algorithms can generate directed acyclic graphs (DAGs), which may help inform variable selection when building models for statistical risk prediction or for assessing causal influence. Here, we demonstrate how the method may help us understand the relationship between variables commonly used to predict cardiovascular disease (CVD) risk. The sample included people who were aged 30 to 80 years old, free of CVD, who had a CVD risk assessment in primary care and had at least 2 years of follow-up. The endpoints were combined CVD events, and the other variables were age, sex, diabetes, smoking, ethnic group, preventive drug use (statins or antihypertensive), blood pressure, family history and cholesterol ratio. We used the ‘grow shrink’ algorithm, in the bnlearn library of R software to generate a DAG. A total of 6256 individuals were included, and 101 CVD events occurred during follow-up. The accepted causal associations between tobacco smoking and age and CVD were identified in the DAG. Ethnic group also influenced risk of CVD events, but it did so indirectly mediated through the effect of smoking. Drug treatment at baseline was influenced by a wide range of other variables, such as family history of CVD, age and diabetes status, but drug treatment did not have a ‘causal’ association with CVD events. Algorithms which generate DAGs are a useful adjunct to traditional statistical methods when deciding on the structure of a regression model to test causal hypotheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助洺全采纳,获得10
刚刚
善学以致用应助kyt采纳,获得10
3秒前
amity发布了新的文献求助10
4秒前
lxgz发布了新的文献求助10
7秒前
G蛋白偶联发布了新的文献求助30
7秒前
zym777完成签到 ,获得积分10
8秒前
yookia应助lewis17采纳,获得10
9秒前
李志明发布了新的文献求助10
9秒前
NexusExplorer应助梦想采纳,获得10
11秒前
11秒前
王世缘完成签到,获得积分10
12秒前
12秒前
檀a完成签到,获得积分10
13秒前
13秒前
几时有完成签到,获得积分20
13秒前
今后应助宇文青寒采纳,获得10
14秒前
14秒前
嘿嘿完成签到,获得积分10
15秒前
15秒前
amity完成签到,获得积分20
15秒前
kyt发布了新的文献求助10
16秒前
杨道之发布了新的文献求助10
16秒前
几时有发布了新的文献求助10
16秒前
天祥发布了新的文献求助10
17秒前
zzp完成签到,获得积分10
18秒前
营养快炫发布了新的文献求助10
19秒前
19秒前
月亮快打烊吖完成签到 ,获得积分10
19秒前
20秒前
22秒前
22秒前
天祥完成签到,获得积分20
23秒前
yoke发布了新的文献求助10
23秒前
24秒前
24秒前
梦想发布了新的文献求助10
25秒前
25秒前
秀丽的千山完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
乐乐乐乐乐乐应助涂丁元采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719