清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Directed Acyclic Graphs for Investigating Causal Paths for Cardiovascular Disease

有向无环图 计算机科学 疾病 医学 算法 内科学
作者
Simon Thornley
出处
期刊:Journal of biometrics & biostatistics [OMICS Publishing Group]
卷期号:04 (05) 被引量:14
标识
DOI:10.4172/2155-6180.1000182
摘要

By testing for conditional dependence, algorithms can generate directed acyclic graphs (DAGs), which may help inform variable selection when building models for statistical risk prediction or for assessing causal influence. Here, we demonstrate how the method may help us understand the relationship between variables commonly used to predict cardiovascular disease (CVD) risk. The sample included people who were aged 30 to 80 years old, free of CVD, who had a CVD risk assessment in primary care and had at least 2 years of follow-up. The endpoints were combined CVD events, and the other variables were age, sex, diabetes, smoking, ethnic group, preventive drug use (statins or antihypertensive), blood pressure, family history and cholesterol ratio. We used the ‘grow shrink’ algorithm, in the bnlearn library of R software to generate a DAG. A total of 6256 individuals were included, and 101 CVD events occurred during follow-up. The accepted causal associations between tobacco smoking and age and CVD were identified in the DAG. Ethnic group also influenced risk of CVD events, but it did so indirectly mediated through the effect of smoking. Drug treatment at baseline was influenced by a wide range of other variables, such as family history of CVD, age and diabetes status, but drug treatment did not have a ‘causal’ association with CVD events. Algorithms which generate DAGs are a useful adjunct to traditional statistical methods when deciding on the structure of a regression model to test causal hypotheses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
行走完成签到,获得积分10
31秒前
浚稚完成签到 ,获得积分10
50秒前
天行健完成签到,获得积分10
52秒前
lixuebin完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
大海的DOI完成签到,获得积分20
1分钟前
大海的DOI发布了新的文献求助10
1分钟前
科研通AI2S应助鬼见愁采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
小莫完成签到 ,获得积分10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
2分钟前
北国雪未消完成签到 ,获得积分10
2分钟前
3分钟前
充电宝应助海棠依旧采纳,获得30
3分钟前
DrleedsG完成签到,获得积分10
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
3分钟前
海棠依旧发布了新的文献求助30
3分钟前
muriel完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
海棠依旧完成签到,获得积分10
3分钟前
3分钟前
4分钟前
名侦探柯基完成签到 ,获得积分10
4分钟前
WittingGU完成签到,获得积分0
4分钟前
英俊的铭应助标致的安荷采纳,获得10
4分钟前
Sylvia_J完成签到 ,获得积分10
4分钟前
Xiejc完成签到 ,获得积分10
4分钟前
4分钟前
happiness完成签到 ,获得积分10
5分钟前
5分钟前
山河与海完成签到,获得积分10
5分钟前
大方忆秋完成签到,获得积分10
5分钟前
神勇的晟睿完成签到,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311205
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619310
什么是DOI,文献DOI怎么找? 1432204
科研通“疑难数据库(出版商)”最低求助积分说明 664536
邀请新用户注册赠送积分活动 649815