Thermodynamics and information Physics Offer New Opportunities in Cancer Therapy

熵产生 熵(时间箭头) 热力学 癌细胞 熵率 物理 统计物理学 联合量子熵 化学 数学 最大熵原理 生物 癌症 统计 遗传学
作者
Joséph Molnár,Barry Thornton,Peintler Gabor
出处
期刊:Current Cancer Therapy Reviews [Bentham Science Publishers]
卷期号:10 (3): 234-245 被引量:3
标识
DOI:10.2174/1573394710666141128001810
摘要

The change of the entropy is the arrow of understanding spontaneous processes in complex systems. The entropy production is the sum of several entropy flows resulting in collective entropy, which determines the direction of individual entropy flows in a biological system. In case of cancer patients these thermodynamical terms have a key role in the tumor development on the expense of the host integrity. The life develops towards the entropy minimum, but cancer tends towards entropy maximum. The relationship between entropy and information quantity was discussed in general by Schrödinger in 1948 and Prigogine [1, 2]. Thermodynamic differences between solid tumors and surrounding normal tissues were promising objects to follow the direction of entropy flow between normal and cancerous tissues. Cancer development is an exergonic process, heat flows from tumor to its surroundings forcing to surrounding normal tissues to gain heat. The differences in the fluxes of entropy produced by various components define the interaction and direction of entropy flow between tumorous and healthy tissues. Tumor cells always have higher entropy than normal cells. Normal, healthy cells develop toward the entropy minimum, whereas the entropy production of cancer cells proceeds towards the entropy maximum. Entropy production rate is the result of bidirectional currents, the sum of individual fluxes flowing in opposite directions between cancerous and normal tissues in the open system. The irreversible processes communicated via various dissipation mechanisms are driven by differences in heat production, chemical potential gradients, Gibbs energy, intracellular acidity, conductance, membrane potential gradients, membrane potential of cells and the response to the exposure to external force fields. The rate of entropy production of tumors is always higher than that of healthy tissues. The response in entropy production of normal and tumorous tissues to applied external forces is different. Consequently, the exposure of a tumorous area to external energy may reverse the direction of the entropy-current-mediated flow of information between the tumor and its environment. In this paper the differences between normal and cancerous tissues will be analyzed on the basis of a comparison of the direction of various components of entropy flow. When the entropy production of the normal tissues is increased by a particular external force so as to be above the entropy of the cancerous tissues, the newly achieved higher entropy of the healthy tissue mediates the signal transmission of normal tissue- to the cancer cells. The process can lead to possible new strategies in the therapy of solid tumors. The expansion of the tumor mass into normal tissues in an intimate relationship provides certain advantages as concerns the survival and growth for normal tissues over that of tumorous tissues. In this process the following mechanisms should be considered: the modification of energy production, glucose oxidation, pH, and the membrane potentials by means of external forces etc. It is presumed that some type of external forces can reduce the entropy flow as a carrier of information flow from cancerous tissues to normal tissues. We suppose that the second law of thermodynamics allows to change the direction of informational entropy from co-existing tumorous tissues to normal tissues by specific external forces. The direction of some components of entropy flow can be reversed. Thermodynamics is essential for an understanding of the processes maintaining the living state and conditions resulting in weak links in biological processes, leading to various diseases. The mechanism of cancer development may involve a thermodynamic explanation, where a series of effects induce disorder in healthy tissues. The process is characterized by the conversion of order to chaos in the exposed tissues that survive as a parasite of the host. Differences between development of healthy and tumorous tissues result in an unidirectional-way for the tumor growth, which evolve towards the entropy maximum following the second law of thermodynamics. Our paper will focus on aspects of and entropy production-related information flow in tumorigenesis and driving forces for cancer growth in the host. We suggest that the results of a thermodynamic comparison of tumor progression and conditions of sustaining healthy tissues will help in the design of novel strategies for cancer therapies. Keywords: Chemical reactions, external force differences, Gibbs energy, healthy and tumor tissues, thermogenesis, viscous stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
龙弟弟完成签到 ,获得积分10
10秒前
imica完成签到 ,获得积分10
18秒前
凌泉完成签到 ,获得积分10
22秒前
一见憘完成签到 ,获得积分10
23秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
YifanWang应助科研通管家采纳,获得30
28秒前
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
优娜完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
35秒前
dadabad完成签到 ,获得积分10
35秒前
allrubbish完成签到,获得积分10
36秒前
Aiden完成签到 ,获得积分10
39秒前
yunt完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
56秒前
aowulan完成签到 ,获得积分10
57秒前
明钟达完成签到 ,获得积分10
58秒前
科研女仆完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
南宫士晋完成签到 ,获得积分10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
圆听听完成签到 ,获得积分10
1分钟前
海边的曼彻斯特完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分0
1分钟前
C2完成签到 ,获得积分10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
雾见春完成签到 ,获得积分10
2分钟前
儒雅的如松完成签到 ,获得积分10
2分钟前
虞无声完成签到,获得积分10
2分钟前
wBw完成签到,获得积分0
2分钟前
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得150
2分钟前
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128360
求助须知:如何正确求助?哪些是违规求助? 4331100
关于积分的说明 13494127
捐赠科研通 4166975
什么是DOI,文献DOI怎么找? 2284300
邀请新用户注册赠送积分活动 1285299
关于科研通互助平台的介绍 1225830