清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Thermodynamics and information Physics Offer New Opportunities in Cancer Therapy

熵产生 熵(时间箭头) 热力学 癌细胞 熵率 物理 统计物理学 联合量子熵 化学 数学 最大熵原理 生物 癌症 统计 遗传学
作者
Joséph Molnár,Barry Thornton,Peintler Gabor
出处
期刊:Current Cancer Therapy Reviews [Bentham Science Publishers]
卷期号:10 (3): 234-245 被引量:3
标识
DOI:10.2174/1573394710666141128001810
摘要

The change of the entropy is the arrow of understanding spontaneous processes in complex systems. The entropy production is the sum of several entropy flows resulting in collective entropy, which determines the direction of individual entropy flows in a biological system. In case of cancer patients these thermodynamical terms have a key role in the tumor development on the expense of the host integrity. The life develops towards the entropy minimum, but cancer tends towards entropy maximum. The relationship between entropy and information quantity was discussed in general by Schrödinger in 1948 and Prigogine [1, 2]. Thermodynamic differences between solid tumors and surrounding normal tissues were promising objects to follow the direction of entropy flow between normal and cancerous tissues. Cancer development is an exergonic process, heat flows from tumor to its surroundings forcing to surrounding normal tissues to gain heat. The differences in the fluxes of entropy produced by various components define the interaction and direction of entropy flow between tumorous and healthy tissues. Tumor cells always have higher entropy than normal cells. Normal, healthy cells develop toward the entropy minimum, whereas the entropy production of cancer cells proceeds towards the entropy maximum. Entropy production rate is the result of bidirectional currents, the sum of individual fluxes flowing in opposite directions between cancerous and normal tissues in the open system. The irreversible processes communicated via various dissipation mechanisms are driven by differences in heat production, chemical potential gradients, Gibbs energy, intracellular acidity, conductance, membrane potential gradients, membrane potential of cells and the response to the exposure to external force fields. The rate of entropy production of tumors is always higher than that of healthy tissues. The response in entropy production of normal and tumorous tissues to applied external forces is different. Consequently, the exposure of a tumorous area to external energy may reverse the direction of the entropy-current-mediated flow of information between the tumor and its environment. In this paper the differences between normal and cancerous tissues will be analyzed on the basis of a comparison of the direction of various components of entropy flow. When the entropy production of the normal tissues is increased by a particular external force so as to be above the entropy of the cancerous tissues, the newly achieved higher entropy of the healthy tissue mediates the signal transmission of normal tissue- to the cancer cells. The process can lead to possible new strategies in the therapy of solid tumors. The expansion of the tumor mass into normal tissues in an intimate relationship provides certain advantages as concerns the survival and growth for normal tissues over that of tumorous tissues. In this process the following mechanisms should be considered: the modification of energy production, glucose oxidation, pH, and the membrane potentials by means of external forces etc. It is presumed that some type of external forces can reduce the entropy flow as a carrier of information flow from cancerous tissues to normal tissues. We suppose that the second law of thermodynamics allows to change the direction of informational entropy from co-existing tumorous tissues to normal tissues by specific external forces. The direction of some components of entropy flow can be reversed. Thermodynamics is essential for an understanding of the processes maintaining the living state and conditions resulting in weak links in biological processes, leading to various diseases. The mechanism of cancer development may involve a thermodynamic explanation, where a series of effects induce disorder in healthy tissues. The process is characterized by the conversion of order to chaos in the exposed tissues that survive as a parasite of the host. Differences between development of healthy and tumorous tissues result in an unidirectional-way for the tumor growth, which evolve towards the entropy maximum following the second law of thermodynamics. Our paper will focus on aspects of and entropy production-related information flow in tumorigenesis and driving forces for cancer growth in the host. We suggest that the results of a thermodynamic comparison of tumor progression and conditions of sustaining healthy tissues will help in the design of novel strategies for cancer therapies. Keywords: Chemical reactions, external force differences, Gibbs energy, healthy and tumor tissues, thermogenesis, viscous stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
29秒前
跳跃的鹏飞完成签到 ,获得积分10
36秒前
心想柿橙完成签到,获得积分10
37秒前
科研通AI2S应助风中不斜采纳,获得10
38秒前
婼汐完成签到 ,获得积分10
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
简因完成签到 ,获得积分10
2分钟前
3分钟前
Becky完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
桥西小河完成签到 ,获得积分10
3分钟前
胡可完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
5分钟前
111完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
矢思然完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
小二郎应助科研通管家采纳,获得10
7分钟前
8分钟前
小花匠发布了新的文献求助50
8分钟前
呃呃呃呃呃完成签到 ,获得积分10
8分钟前
冷傲半邪完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
9分钟前
紫熊发布了新的文献求助10
9分钟前
张同学快去做实验呀完成签到,获得积分10
9分钟前
9分钟前
紫熊发布了新的文献求助10
10分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209