Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 护理部 基因
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YWR完成签到,获得积分10
刚刚
1秒前
2秒前
Ben34完成签到,获得积分10
3秒前
和谐金毛发布了新的文献求助10
4秒前
热情的远锋完成签到 ,获得积分20
4秒前
Mac完成签到,获得积分10
5秒前
元元元贞完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
龙腾万里完成签到,获得积分10
8秒前
领导范儿应助小丁同学采纳,获得10
9秒前
10秒前
10秒前
dulu发布了新的文献求助10
11秒前
邵泉颖完成签到,获得积分10
11秒前
Chu1完成签到,获得积分10
11秒前
96完成签到 ,获得积分10
13秒前
13秒前
爱喝奶茶发布了新的文献求助10
13秒前
田様应助ShawnFusion采纳,获得10
13秒前
思源应助宫鹏涛采纳,获得20
13秒前
lmk完成签到 ,获得积分10
14秒前
dyy完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
拾叁完成签到 ,获得积分10
15秒前
16秒前
16秒前
卿莞尔发布了新的文献求助10
17秒前
新八完成签到,获得积分10
17秒前
Katherine完成签到,获得积分10
18秒前
19秒前
衫青发布了新的文献求助10
19秒前
AR完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148