Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 护理部 基因
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
大个应助Stellan采纳,获得10
1秒前
Criminology34应助落后成仁采纳,获得10
1秒前
zxcvbnm完成签到 ,获得积分10
1秒前
longer发布了新的文献求助10
1秒前
约离发布了新的文献求助10
1秒前
微笑傥完成签到,获得积分10
1秒前
CipherSage应助仁爱嫣采纳,获得10
2秒前
慕青应助绝世冰淇淋采纳,获得10
2秒前
买三个包子吧完成签到,获得积分10
3秒前
zhw发布了新的文献求助10
3秒前
yolo完成签到,获得积分10
3秒前
4秒前
结实青丝发布了新的文献求助10
5秒前
Jasper应助曾经问雁采纳,获得10
5秒前
徐志豪发布了新的文献求助10
6秒前
汉堡包应助大豆子采纳,获得10
6秒前
6秒前
咵嚓发布了新的文献求助10
6秒前
Sword完成签到,获得积分10
7秒前
熊猫发布了新的文献求助10
7秒前
研友_VZG7GZ应助黄河鲤鱼儿采纳,获得10
7秒前
芷兰丁香发布了新的文献求助50
8秒前
8秒前
9秒前
动听的青曼完成签到,获得积分10
10秒前
814791097完成签到,获得积分10
10秒前
10秒前
英姑应助追寻的书竹采纳,获得10
10秒前
科研小白关注了科研通微信公众号
11秒前
享文完成签到,获得积分10
11秒前
11秒前
sssss完成签到,获得积分10
12秒前
gmy完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
JamesPei应助采蘑菇采纳,获得10
12秒前
量子星尘发布了新的文献求助30
12秒前
杨怡红完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172