Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 基因 护理部
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你们都是好人呀完成签到,获得积分10
1秒前
光光完成签到,获得积分10
1秒前
CodeCraft应助英勇的雪碧采纳,获得10
1秒前
2秒前
段欣池完成签到 ,获得积分10
2秒前
无限魔镜发布了新的文献求助10
3秒前
frozensun应助ZZZ采纳,获得10
4秒前
太叔友蕊发布了新的文献求助10
4秒前
11111完成签到,获得积分20
4秒前
王佳亮完成签到,获得积分10
5秒前
5秒前
5秒前
南橘发布了新的文献求助10
6秒前
6秒前
重要的向珊完成签到,获得积分10
6秒前
终澈发布了新的文献求助10
6秒前
灵感大王喵完成签到 ,获得积分10
6秒前
6秒前
光光发布了新的文献求助10
6秒前
Clarissa完成签到,获得积分10
6秒前
6秒前
养恩完成签到,获得积分10
8秒前
FashionBoy应助kai采纳,获得10
8秒前
Lucas应助勤劳的乐安采纳,获得10
9秒前
科研通AI2S应助Noir采纳,获得10
9秒前
楚寅发布了新的文献求助10
9秒前
9秒前
justonce发布了新的文献求助10
10秒前
10秒前
10秒前
迷你的怀绿完成签到,获得积分10
12秒前
深情安青应助Evi采纳,获得10
13秒前
13秒前
苏兜兜完成签到,获得积分10
14秒前
Lucas应助ruby采纳,获得10
15秒前
parrowxg完成签到,获得积分10
15秒前
morning发布了新的文献求助10
16秒前
16秒前
16秒前
共享精神应助123采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531105
求助须知:如何正确求助?哪些是违规求助? 4620029
关于积分的说明 14571024
捐赠科研通 4559472
什么是DOI,文献DOI怎么找? 2498457
邀请新用户注册赠送积分活动 1478413
关于科研通互助平台的介绍 1449928