Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 护理部 基因
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
砳熠完成签到 ,获得积分10
刚刚
乔佳怡发布了新的文献求助10
3秒前
Jiang发布了新的文献求助10
3秒前
铁妹儿完成签到 ,获得积分10
4秒前
汉堡包应助生5clean采纳,获得10
6秒前
lhy12345完成签到,获得积分10
7秒前
8秒前
科目三应助Franky采纳,获得10
8秒前
舒心平蝶完成签到 ,获得积分10
10秒前
11秒前
satchzhao完成签到,获得积分10
12秒前
12秒前
靜心完成签到 ,获得积分10
12秒前
老北京完成签到,获得积分10
12秒前
青鸢完成签到,获得积分10
12秒前
自由的自中完成签到 ,获得积分10
13秒前
青鸢发布了新的文献求助10
16秒前
16秒前
kaier完成签到 ,获得积分10
17秒前
实验室的亡灵完成签到,获得积分10
18秒前
木棉完成签到,获得积分10
18秒前
云不暇完成签到 ,获得积分10
19秒前
HAPPY完成签到,获得积分10
21秒前
zhouyuandshu完成签到,获得积分10
22秒前
Franky发布了新的文献求助10
22秒前
想吃芝士焗饭完成签到 ,获得积分10
22秒前
内向的熊猫完成签到,获得积分10
23秒前
爆米花应助内向的熊猫采纳,获得10
27秒前
zz完成签到,获得积分10
27秒前
chun完成签到 ,获得积分10
29秒前
Franky完成签到,获得积分10
30秒前
依霏完成签到,获得积分10
32秒前
单纯的小土豆完成签到,获得积分10
33秒前
wang0626完成签到 ,获得积分10
33秒前
阿尔法贝塔完成签到 ,获得积分10
34秒前
火龙使者完成签到,获得积分10
35秒前
zhouzhou完成签到,获得积分10
35秒前
Binbin完成签到 ,获得积分10
37秒前
小敏完成签到,获得积分10
39秒前
十七完成签到 ,获得积分10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175