Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power

码头 自动停靠 虚拟筛选 蛋白质-配体对接 计算机科学 对接(动物) 计算生物学 药物发现 人工智能 数据挖掘 化学 生物 生物信息学 医学 生物化学 生物信息学 护理部 基因
作者
Zhe Wang,Huiyong Sun,Xiaojun Yao,Dan Li,Lei Xu,Youyong Li,Sheng Tian,Tingjun Hou
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:18 (18): 12964-12975 被引量:638
标识
DOI:10.1039/c6cp01555g
摘要

As one of the most popular computational approaches in modern structure-based drug design, molecular docking can be used not only to identify the correct conformation of a ligand within the target binding pocket but also to estimate the strength of the interaction between a target and a ligand. Nowadays, as a variety of docking programs are available for the scientific community, a comprehensive understanding of the advantages and limitations of each docking program is fundamentally important to conduct more reasonable docking studies and docking-based virtual screening. In the present study, based on an extensive dataset of 2002 protein-ligand complexes from the PDBbind database (version 2014), the performance of ten docking programs, including five commercial programs (LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and five academic programs (AutoDock, AutoDock Vina, LeDock, rDock, and UCSF DOCK), was systematically evaluated by examining the accuracies of binding pose prediction (sampling power) and binding affinity estimation (scoring power). Our results showed that GOLD and LeDock had the best sampling power (GOLD: 59.8% accuracy for the top scored poses; LeDock: 80.8% accuracy for the best poses) and AutoDock Vina had the best scoring power (rp/rs of 0.564/0.580 and 0.569/0.584 for the top scored poses and best poses), suggesting that the commercial programs did not show the expected better performance than the academic ones. Overall, the ligand binding poses could be identified in most cases by the evaluated docking programs but the ranks of the binding affinities for the entire dataset could not be well predicted by most docking programs. However, for some types of protein families, relatively high linear correlations between docking scores and experimental binding affinities could be achieved. To our knowledge, this study has been the most extensive evaluation of popular molecular docking programs in the last five years. It is expected that our work can offer useful information for the successful application of these docking tools to different requirements and targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栀璃鸳挽发布了新的文献求助10
刚刚
1秒前
JiAWee完成签到 ,获得积分10
1秒前
DUDU完成签到,获得积分10
1秒前
热心的荣轩关注了科研通微信公众号
1秒前
1秒前
赘婿应助林周采纳,获得10
2秒前
冷絮发布了新的文献求助10
2秒前
2秒前
decade发布了新的文献求助10
2秒前
英俊的铭应助千亦膤采纳,获得30
2秒前
无花果应助文静的柚子采纳,获得10
2秒前
受伤的豌豆完成签到,获得积分10
3秒前
3秒前
yyyhhh发布了新的文献求助30
3秒前
3秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
鲸落发布了新的文献求助10
4秒前
孤独梦柏完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
义气凡阳完成签到,获得积分10
4秒前
Lucas应助仙人掌沙拉采纳,获得10
5秒前
陈zz完成签到,获得积分10
5秒前
DUDU发布了新的文献求助10
5秒前
科研通AI5应助SHUANG采纳,获得10
5秒前
lurongjun完成签到,获得积分20
5秒前
lijoean发布了新的文献求助30
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
夏老板喜欢夏天完成签到,获得积分10
7秒前
Unicorn发布了新的文献求助10
8秒前
lurongjun发布了新的文献求助10
8秒前
fan完成签到 ,获得积分10
8秒前
8秒前
9秒前
顾矜应助Jammie采纳,获得10
10秒前
KevinSun完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835