This study aims to extract keratin from quail feather wastes and incorporate it with silver nanoparticles into a synthetic biodegradable polymer in order to fabricate a nanofibrous scaffold with improved biomedical properties. Polyvinyl alcohol was used as the host polymer and spinning dopes with different amounts (0, 0.15, and 0.75 wt %) of extracted keratin and the same amount of silver nanoparticles prepared in order to fabricate scaffolds. According to the results, the scaffolds with a higher amount of extracted keratin (i.e. 0.75 wt %) provided less bead formation and more uniformity; also, they gave 99.9% and 98% of the antibacterial activity against gram negative ( Escherichia coli) and gram positive ( Staphylococcus aureus) bacteria, respectively. The analysis of the biological response of fibroblast cells cultured on the synthetic scaffolds exhibited remarkable improvement in comparison to the pristine (polyvinyl alcohol-Ag) scaffolds. This article concludes that the addition of extracted keratin into a polymeric matrix (polyvinyl alcohol) can improve both antibacterial properties and cell viability for the resultant scaffolds, and this qualifies them as potent candidates for biomedical applications.