数学
新颖性
摄动(天文学)
无穷
期限(时间)
数学分析
数学物理
变分法
卡帕
纯数学
应用数学
组合数学
物理
量子力学
几何学
哲学
神学
作者
Marco A. S. Souto,José Fernando Leite. Aires
出处
期刊:Topological Methods in Nonlinear Analysis
[Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University]
日期:2015-09-01
卷期号:: 1-1
被引量:15
标识
DOI:10.12775/tmna.2015.069
摘要
In this paper we study the existence of nontrivial classical solution forthe quasilinear Schr\"odinger equation: $$ - \Delta u +V(x)u+\frac{\kappa}{2}\Delta(u^{2})u= f(u), $$%in $\mathbb{R}^N$, where $N\geq 3$, $f$ hassubcritical growth and $V$ is a nonnegative potential. For this purpose, we use variational methods combined with perturbation arguments, penalization technics of Del Pino and Felmer and Moser iteration. As a main novelty with respect to some previous results, in our work we are able to deal with the case $\kappa > 0$ and the potential can vanish at infinity.
科研通智能强力驱动
Strongly Powered by AbleSci AI