A time-averaged intensity distribution of terahertz waves is imaged by converting terahertz waves to optical fluorescence. The conversion becomes possible by exciting Cs atoms to a Rydberg state. The image acquisition time is 40 ms. Terahertz (THz) near-field imaging is a flourishing discipline1,2, with applications from fundamental studies of beam propagation3 to the characterization of metamaterials4,5 and waveguides6,7. Beating the diffraction limit typically involves rastering structures or detectors with length scale shorter than the radiation wavelength; in the THz domain this has been achieved using a number of techniques including scattering tips8,9 and apertures10. Alternatively, mapping THz fields onto an optical wavelength and imaging the visible light removes the requirement for scanning a local probe, speeding up image collection times11,12. Here, we report THz-to-optical conversion using a gas of highly excited Rydberg atoms. By collecting THz-induced optical fluorescence we demonstrate a real-time image of a THz standing wave and use well-known atomic properties to calibrate the THz field strength.