Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies.

生物 人口 肿瘤微环境 进化动力学 系统生物学 细胞毒性T细胞 表型 进化博弈论 博弈论 计算生物学 癌症 遗传学 数学 数理经济学 医学 体外 基因 环境卫生
作者
Robert A. Gatenby,Thomas L. Vincent
出处
期刊:PubMed 卷期号:2 (9): 919-27 被引量:104
链接
标识
摘要

Quantitative models from population biology and evolutionary game theory frame the tumor-host interface as a dynamical microenvironment of competing tumor and normal populations. Through this approach, critical parameters that control the outcome of this competition are identified and the conditions necessary for formation of an invasive cancer are defined. Perturbations in these key parameters that destabilize the cancer solution of the state equations and produce tumor regression can be predicted. The mathematical models demonstrate significant theoretical limitations in therapies based solely on cytotoxic drugs. Because these approaches do not alter critical parameters controlling system dynamics, the tumor population growth term will remain positive as long as any individual cells are present so that the tumor will invariably recur unless all proliferative cells are killed. The models demonstrate that such total effectiveness is rendered unlikely by the genotypic heterogeneity of tumor populations (and, therefore, the variability of their response to such drugs) and the ability of tumor cells to adapt to these proliferation constraints by evolving resistant phenotypes. The mathematical models support therapeutic strategies that simultaneously alter several of the key parameters in the state equations. Furthermore, the models demonstrate that administration of cytotoxic therapies will, by reducing the tumor population density, create system dynamics more conducive to perturbations by biological modifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yun完成签到 ,获得积分10
1秒前
1秒前
3秒前
健忘曼冬发布了新的文献求助10
3秒前
redondo完成签到,获得积分10
3秒前
momo完成签到,获得积分10
4秒前
希望天下0贩的0应助meng采纳,获得10
5秒前
龙歪歪发布了新的文献求助10
6秒前
6秒前
暮城完成签到,获得积分10
6秒前
7秒前
云墨完成签到 ,获得积分10
7秒前
9秒前
10秒前
Akim应助caoyy采纳,获得10
10秒前
11秒前
科研通AI2S应助DreamMaker采纳,获得10
11秒前
14秒前
zho发布了新的文献求助30
14秒前
14秒前
ywang发布了新的文献求助10
14秒前
ZD小草完成签到 ,获得积分10
15秒前
健忘曼冬完成签到,获得积分10
16秒前
hkl1542发布了新的文献求助50
17秒前
18秒前
19秒前
KYN完成签到,获得积分10
20秒前
20秒前
桐桐应助叶未晞yi采纳,获得10
20秒前
20秒前
su发布了新的文献求助10
21秒前
123456789完成签到,获得积分10
23秒前
炙热的如柏完成签到,获得积分20
23秒前
24秒前
25秒前
HWei完成签到,获得积分10
25秒前
Ryan完成签到,获得积分10
25秒前
26秒前
Jzhang应助丙队长采纳,获得10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824