计算机科学
加速度
卷积(计算机科学)
卷积神经网络
人工智能
核(代数)
特征提取
模式识别(心理学)
构造(python库)
深度学习
任务(项目管理)
加速度计
特征(语言学)
人工神经网络
数学
工程类
语言学
哲学
物理
系统工程
经典力学
组合数学
程序设计语言
操作系统
摘要
In this paper, we propose an acceleration-based human activity recognition method using popular deep architecture, Convolution Neural Network (CNN). In particular, we construct a CNN model and modify the convolution kernel to adapt the characteristics of tri-axial acceleration signals. Also, for comparison, we use some widely used methods to accomplish the recognition task on the same dataset. The large dataset we constructed consists of 31688 samples from eight typical activities. The experiment results show that the CNN works well, which can reach an average accuracy of 93.8% without any feature extraction methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI