A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection

高光谱成像 聚类分析 计算机科学 排名(信息检索) 选择(遗传算法) 遥感 人工智能 模式识别(心理学) 数据挖掘 地质学
作者
Sen Jia,Guihua Tang,Jiasong Zhu,Qingquan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 88-102 被引量:315
标识
DOI:10.1109/tgrs.2015.2450759
摘要

Through imaging the same spatial area by hyperspectral sensors at different spectral wavelengths simultaneously, the acquired hyperspectral imagery often contains hundreds of band images, which provide the possibility to accurately analyze and identify a ground object. However, due to the difficulty of obtaining sufficient labeled training samples in practice, the high number of spectral bands unavoidably leads to the problem of a "dimensionality disaster" (also called the Hughes phenomenon), and dimensionality reduction should be applied. Concerning band (or feature) selection, conventional methods choose the representative bands by ranking the bands with defined metrics (such as non-Gaussianity) or by formulating the band selection problem as a clustering procedure. Because of the different but complementary advantages of the two kinds of methods, it can be beneficial to use both methods together to accomplish the band selection task. Recently, a fast density-peak-based clustering (FDPC) algorithm has been proposed. Based on the computation of the local density and the intracluster distance of each point, the product of the two factors is sorted in decreasing order, and cluster centers are recognized as points with anomalously large values; hence, the FDPC algorithm can be considered a ranking-based clustering method. In this paper, the FDPC algorithm has been enhanced to make it suitable for hyperspectral band selection. First, the ranking score of each band is computed by weighting the normalized local density and the intracluster distance rather than equally taking them into account. Second, an exponential-based learning rule is employed to adjust the cutoff threshold for a different number of selected bands, where it is fixed in the FDPC. The proposed approach is thus named the enhanced FDPC (E-FDPC). Furthermore, an effective strategy, which is called the isolated-point-stopping criterion, is developed to automatically determine the appropriate number of bands to be selected. That is, the clustering process will be stopped by the emergence of an isolated point (the only point in one cluster). Experimental results on three real hyperspectral data demonstrate that the bands selected by our E-FDPC approach could achieve higher classification accuracy than the FDPC and other state-of-the-art band selection techniques, whereas the isolated-point-stopping criterion is a reasonable way to determine the preferable number of bands to be selected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗便当发布了新的文献求助10
刚刚
www发布了新的文献求助30
刚刚
1秒前
可爱茹嫣发布了新的文献求助50
2秒前
复杂的断天完成签到,获得积分10
2秒前
2秒前
YGTRECE完成签到,获得积分20
3秒前
要减肥的乐双完成签到 ,获得积分10
4秒前
ssskong发布了新的文献求助10
4秒前
HCLonely应助哼哼大王采纳,获得10
4秒前
XKINGLEE发布了新的文献求助10
5秒前
kuikichu完成签到,获得积分10
5秒前
镇痛蚊子发布了新的文献求助10
6秒前
6秒前
mkl完成签到,获得积分20
7秒前
7秒前
浅尝离白应助mount采纳,获得20
7秒前
浅尝离白应助mount采纳,获得20
7秒前
7秒前
8秒前
加菲不猫完成签到,获得积分10
8秒前
ssskong完成签到,获得积分10
10秒前
小犁牛完成签到 ,获得积分10
10秒前
无花果应助薛小飞采纳,获得10
10秒前
檀溪完成签到,获得积分10
10秒前
11秒前
11秒前
哼哼大王完成签到,获得积分10
11秒前
11秒前
小谢同学发布了新的文献求助10
12秒前
搜集达人应助可可杨采纳,获得10
13秒前
14秒前
tttt完成签到,获得积分20
14秒前
16秒前
田小姐发布了新的文献求助10
17秒前
XKINGLEE完成签到,获得积分10
17秒前
18秒前
18秒前
子车茗应助科研通管家采纳,获得20
20秒前
打打应助科研通管家采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233820
求助须知:如何正确求助?哪些是违规求助? 2880284
关于积分的说明 8214616
捐赠科研通 2547734
什么是DOI,文献DOI怎么找? 1377175
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623197