A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection

高光谱成像 聚类分析 计算机科学 排名(信息检索) 选择(遗传算法) 遥感 人工智能 模式识别(心理学) 数据挖掘 地质学
作者
Sen Jia,Guihua Tang,Jiasong Zhu,Qingquan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (1): 88-102 被引量:326
标识
DOI:10.1109/tgrs.2015.2450759
摘要

Through imaging the same spatial area by hyperspectral sensors at different spectral wavelengths simultaneously, the acquired hyperspectral imagery often contains hundreds of band images, which provide the possibility to accurately analyze and identify a ground object. However, due to the difficulty of obtaining sufficient labeled training samples in practice, the high number of spectral bands unavoidably leads to the problem of a "dimensionality disaster" (also called the Hughes phenomenon), and dimensionality reduction should be applied. Concerning band (or feature) selection, conventional methods choose the representative bands by ranking the bands with defined metrics (such as non-Gaussianity) or by formulating the band selection problem as a clustering procedure. Because of the different but complementary advantages of the two kinds of methods, it can be beneficial to use both methods together to accomplish the band selection task. Recently, a fast density-peak-based clustering (FDPC) algorithm has been proposed. Based on the computation of the local density and the intracluster distance of each point, the product of the two factors is sorted in decreasing order, and cluster centers are recognized as points with anomalously large values; hence, the FDPC algorithm can be considered a ranking-based clustering method. In this paper, the FDPC algorithm has been enhanced to make it suitable for hyperspectral band selection. First, the ranking score of each band is computed by weighting the normalized local density and the intracluster distance rather than equally taking them into account. Second, an exponential-based learning rule is employed to adjust the cutoff threshold for a different number of selected bands, where it is fixed in the FDPC. The proposed approach is thus named the enhanced FDPC (E-FDPC). Furthermore, an effective strategy, which is called the isolated-point-stopping criterion, is developed to automatically determine the appropriate number of bands to be selected. That is, the clustering process will be stopped by the emergence of an isolated point (the only point in one cluster). Experimental results on three real hyperspectral data demonstrate that the bands selected by our E-FDPC approach could achieve higher classification accuracy than the FDPC and other state-of-the-art band selection techniques, whereas the isolated-point-stopping criterion is a reasonable way to determine the preferable number of bands to be selected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的钢笔完成签到,获得积分20
刚刚
wer发布了新的文献求助10
刚刚
2秒前
3秒前
4秒前
hanspro完成签到,获得积分10
4秒前
Kuhn_W完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
8秒前
Orange应助宿雨采纳,获得10
8秒前
8秒前
科研通AI6应助雪糕采纳,获得10
8秒前
浮游应助king采纳,获得10
8秒前
甜甜梦寒发布了新的文献求助10
9秒前
waoller1发布了新的文献求助10
10秒前
英俊的铭应助wer采纳,获得30
10秒前
李恒豪完成签到,获得积分10
11秒前
WY发布了新的文献求助10
11秒前
11秒前
11秒前
d叨叨鱼发布了新的文献求助10
11秒前
12秒前
培a发布了新的文献求助10
12秒前
12秒前
13秒前
熙泽发布了新的文献求助10
13秒前
14秒前
14秒前
CipherSage应助ytyl采纳,获得10
15秒前
疯狂的醉波完成签到 ,获得积分10
15秒前
15秒前
科研式完成签到,获得积分10
16秒前
17秒前
19秒前
传统的唯雪完成签到,获得积分10
19秒前
JamesPei应助BruceQ采纳,获得10
19秒前
刘刘发布了新的文献求助10
20秒前
成就盼芙完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908059
求助须知:如何正确求助?哪些是违规求助? 4184839
关于积分的说明 12995484
捐赠科研通 3951356
什么是DOI,文献DOI怎么找? 2166932
邀请新用户注册赠送积分活动 1185461
关于科研通互助平台的介绍 1091987