一般化
分数布朗运动
数学
分数阶微积分
分形
反常扩散
数学分析
扩散方程
简单(哲学)
口译(哲学)
布朗运动
混乱的
扩散过程
应用数学
统计物理学
物理
计算机科学
经济
哲学
人工智能
经济
认识论
程序设计语言
统计
知识管理
服务(商务)
创新扩散
作者
А. И. Саичев,G. M. Zaslavsky
出处
期刊:Chaos
[American Institute of Physics]
日期:1997-12-01
卷期号:7 (4): 753-764
被引量:808
摘要
Fractional generalization of the diffusion equation includes fractional derivatives with respect to time and coordinate. It had been introduced to describe anomalous kinetics of simple dynamical systems with chaotic motion. We consider a symmetrized fractional diffusion equation with a source and find different asymptotic solutions applying a method which is similar to the method of separation of variables. The method has a clear physical interpretation presenting the solution in a form of decomposition of the process of fractal Brownian motion and Lévy-type process. Fractional generalization of the Kolmogorov–Feller equation is introduced and its solutions are analyzed.
科研通智能强力驱动
Strongly Powered by AbleSci AI